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ABSTRACT

Military commanders determine the appropriate Force Protection
measures to protect their units from a wide variety of threats based on
their assessment of the enemy threat in the specific situation. They

currently have no statistical tool from which to base their assessment

.of the threat, or to recognize changes in the current situation. In

Operations Other Than War (0OOTW), environments where the enemy is
disorganized and incapable of mounting a deception plan, staffs could
model hostile events as stochastic events and use statistical methods to
detect changes to the process. This thesis developed a statistical
tool, based on Cumulative Sum (CUSUM) and Shewhart Charts, that military
leaders can use in OOTW environments to recognize statistically
significant changes in the situation. The tool applies current
univariate control chart methods, as well as a new nonparametric
multivariate control scheme developed in this thesis, to SFOR incident
data. The tool enables commanders to identify isolated and persistent
shifts in the means of the data categories or shifts in the correlation
of three data categories. By recognizing changes in the current
situation, military leaders have a basis from which to change their

force protection measures and better protect their unit.
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EXECUTIVE SUMMARY

Tactical commanders in the Army rely on pattern recognition
methods to detect changes to the current situation, which in turn form
the basis for their tactical decisions and plans. Commanders do not
have a tool that enables them to differentiate the naturally occurring
random variations in the situation from statistically significant
changes in the situation. In Operations Other Than War (OOTW), where
the enemy is disorganized and incapable of mounting a deception plan,
staffs could model hostile events as stochastic events and use
statistical methods to detect significant changes in the situation.

This thesis, specifically targeted at units deployed to Bosnia as
part of the North Atlantic Treaty Organization (NATO) Stabilization
Force (SFOR), developed a statistical tool that allows military leaders
to analyze enemy incident data and determine when statistically
significant changes in the situation occur. The tool is implemented in
an Excel worksheet with Visual Basic macros, and is based on statistical
process control (SPC) Cumulative Sum (CUSUM) and Shewhart control
charts. The tool’s graphical and text outputs ensure easy
identification of the shifts and the time periods in which they occur.

The methods used in the worksheet utilize current SPC techniques
for analyzing univariate Poisson data and also a nonparametric method
for analyzing multivariate data, developed in this thesis. The
univariate Poisson methods enable commanders to analyze predictor
variables separately to detect isolated departures and persistent shifts
in the mean number of the individual wvariables. The nonparametric
multivariate method enables them to analyze three predictor variables
simultaneously to detect isolated departures and persistent shifts in
the mean number of predictor variables, as well as isolated departures
and persistent shifts in the correlation structure of the variables.

In the case of the SFOR in Bosnia, actions of the different ethnic
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groups from March to October 1999 are tabulated and categorized into
three categories: threats and rhetoric, contentious activities, and
violent actions toward SFOR. We analyzed the data using the methods
described above to identify statistically significant isolated
departures and statistically significant persistent shifts in the data
categories. By identifying statistically significant changes in the
situation, the commander is able to make more informed decisions and
appropriate changes to the force protection level of his unit.

Results from the analysis suggest several key issues about the
situation that the commander should find informative and useful when
developing his force protection plan. First, the situation was the most
hostile in the initial data collection periods, 1 March through 5 April
1999, as denoted by high number of incidents K in all data categories.
The high numbers of enemy incidents were not naturally occurring random
variations in the situation, but were instead statistically significant
isolated departures from the usually observed values. In particular,
statistically significant high numbers of incidents occurred in category
3, violence towards SFOR, from 22 through 28 March, and in category 3,
threats and rhetoric, from 29 March through 4 April. Possible causes
for these increases may be found in the fact that they coincide with the
United Nation’s efforts to broker a peace settlement in Kosovo from
February through the middle of March 1999, and the NATO air strikes
aéainst Serbian facilities, which commenced on 25 March 1999. Looking
at the SFOR incident log during 22 through 28 March, which corresponds
to the start of the bombing campaign, reveals that at least six of the
eleven demonstrations against SFOR were anti-bombing dJdemonstrations.
From 29 March through 4 April, the number increased to 12 out of 17.

The high levels of enemy incidents explained above were isolated
occurrences, with the numbers of incidents decreasing rapidly after 5
April. Increasing force protection levels after these incidents

occurred would be somewhat ineffective. The changes would not take
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effect until after the highest threat has already passed. Increasing
force protection level will be effective in protecting the force against
the lesser threats that occur as the number of incidents decrease.

Commanders should not be completely convinced by this seemingly
obvious cause of the high number of incidents. They should proceed with
additional analysis of the situation to determine if other factors were
present that may have caused or assisted in the increased number of
incidents. The commander should use these factors to predict future
enemy threat levels in similar situations. From these predictions, he
can initiate the appropriate force protection 1levels prior to the
situation occurring, thus better protecting his unit.

The initial high hostility period was followed by a continual
decrease in the number of enemy incidents in all data categories through
the end of the data collection period, 3 October 1999. The number of
incidents decreased rapidly from 5 through 24 April. After 25 April,
the numbers of incidents appeared to stabilize. The tool developed in
this thesis however, identified numerous statistically significant
persistent decreases in the number of incidents after 25 April. Two
statistically significant decreases occurred in category 1, threéts and
rhetoric, and one statistically significant decrease occurred in each of
category 2, contentious activities, and category 3, vioclence towards
SFOR. All of these persistent decreases justify consideration of lower
force protection levels of the unit. The commanders and their staffs
need to analyze the situation further to determine the specific causes
of these decreases and the appropriate force protection levels. By
identifying the possible causes of these decreases, commanders could
also focus their peacekeeping efforts in order to continue these trends.

It should be noted that there was an isolated statistically
significant increase in the number of incidents in category 1, threats
and rhetoric, from 13 through 19 September. As with other isolated

increases discussed earlier, the cause of this increase should be
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determined and used for future reference.

Finally, the correlation between the data categories did not
change. That is to say, the enemy’s efforts, as divided among the three
categories, remained constant. This can be seen by the simultaneous
increasing or decreasing trends that occurred in all three data
categories. If a change in the correlation between the data categories
was detected, it would indicated a change in the enemy’s distribution of
effort, say from threats to acts of violence. This information would be
vital to the commander in his assessment of the threat and his
determination of appropriate force protection levels.

Overall recommendations after analyzing the SFOR incident data are
that the force protection measures be reduced due to the statistically
significant decreases in the number of enemy incidents after 5 April
1999. However, sufficient protection should be maintained to safeguard
against possible isolated increases in enemy incidents, as detected in
category 1, threats and rhetoric, 13 through 19 September.

As shown above, the tool developed in this thesis provides vital
information about the enemy situation that may not have otherwise been
obtainable by the commander. It enables the commander to quickly
differentiate between normal random variation in the situation and
statistically significant changes in the situation. This will greatly
assist the commander in assessing the enemy threat and deveioping his
force protection plan. This tool is not an omniscient tool by which
commanders can guarantee the 100% safety of their soldiers. It is,
however, the first and only statistical tool that the commander has at

his disposal for detecting changes in the enemy situation.
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I. INTRODUCTION

Force protection 1is defined as the ‘“security plan designed to
protect soldiers, civilian employees, family members, facilities and
equipment in all locations and situations..” (Department of the Army,
1994, pl06). Its primary focus is to sustain the strength of the force
in order to accomplish the mission. It is a key planning consideration
in all operations from high intensity conflict to daily soldier
training, and should consider every possible threat from terrorist
attacks to simple disease prevention.

In conventional combat operations, the enemy is organized and
conducts operations in accordance with its doctrine. This normally
includes the use of deception, displaying a false posture, to assist in
ensuring the success of the main effort. The friendly commander uses
the Intelligence Preparation of the Battlefield (IPB) process to assess
the enemy capabilities and determine how best to defeat him. In the IPB
process, the friendly commander gathers intelligence to determine the
enemy’s position, strength, and capabilitiés. He then compares this to
the enemy’s doctrine to predict the enemy’s next course of action, to
include when and where it will occur. (Department of the Army, 1990, p4é-
3) Facing an organized enemy, the commander must consider the enemy’s
use of deception throughout the entire IPB process. He cannot view the
information collected as an absolute indicator of what the enemy is
planning to do next. Since all actions fbr both the enemy and friendly
are planned using strategy and a partial amount 6f information on the
other side, game theory methods are best suited to model the actions of
the opposing sides in this situation.

In Operations Other Than War (OOTW), however, the enemy consists
of *“loosely organized groups of irregulars, terrorists, or other
conflicting segments of a population as predominate forces” (Department

of the Army, 1994, pV). These loosely organized groups have no




predetermined doctrine (Department of the Army, 1993, p3-2), and in most
cases their minimal command structures are incapable of coordinating a
sophisticated deception plan. In the absence of doctrine, the friendly
commander must create models based on enemy operational patterns. He
develops operational patterns on the enemy by determining a set of
events, or indicators, that best capture the character or operating
habits of the enemy. He then establishes a record of these events by
time and location, and analyzes these records to identify patterns in
the events (Center for Army Lessons Learned, 1996, ppl-2). The
commander and his staff use these pat{:erns to predict future enemy
events. Because the enemy is assumed to be incapable of executing a
deception plan, the commander can view and model the events collected as
tangible, stochastic indicators of future enemy acﬁions. Because the
events are stochastic, statistical methods are well suited to analyze
and model this situation.

Unfortunately, commanders and their staff do not possess a
statistical tool to determine if a change in the frequency of one of the
indicators <constitutes a statistically significant change in the
situation. That is, if the change is the result of an actual shift in
the frequency or is the result of normal stochastic wvariation in the
situation. Such a tool would assist them in maximizing the speed of
detection of these changes and in minimizing the occurrence of false
alarms, i.e. thinking that a change had occurred when in fact it did

not. This in turn will provide the commanders an opportunity to

prudently adjust their force protection measures.
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II. BACKGROUND

The catastrophic results of improper force protection measures
are evident in the June 25, 1996 bombing of the U.S. Air Force Khobar
Tower housing complex in Saudi Arabia, where 19 American service members
were killed. In this incident, earlier terrorist activities, namely a
car bomb in November 1995, signaled a possible increase in the terrorist
threat térgeted against U.S. forces. As a result, the U.S. Commander in
Chief for the Central Command declared a “high” threat level for the
entire country. Upon notification of the increased threat level,
commands across Saudi Arabia initiated vulnerability assessments on all
installations to include Khobar Towers. From these assessments,
numerous force protection improvements were made. However, an
investigation following the disaster concluded that even with all this
information, the staff did not provide proper guidance to the commander
of the unit, and that the commander failed to adequately protect his
forces (Cohen, 1997, ppl-3).

As a result of the tragedy at Khobar towers, the Secretary of
Defense, William J. Perry, issued a memorandum to the Chairman of the
Joint Chiefs of Staff that stated, “this incident and others that almost
certainly will follow demand an increased emphasis on force protection
throughout the Department of Defense” (Perry, 1996, pl). From this new
emphasis, 1local commanders were given increased responsibility and
authority for £force protection (Air Force News, 1996, p2) and new
intensified training requirements were established for all deploying
personnel. :

Lessons learned in training exercises for units deploying to
Bosnia have identified that although “S2s generally have a system for
plotting incident overlays” they do not have a method of collating and
analyzing the information to determine increasing threats or to develop

threat models. The lessons learned also state that a “simple computer




database program can be used to more quickly discern patterns” (Center
for Army Lessons Learned, 1996, pl). The Center For Army Lessons
Learned (CALL) advises the S2 to enter the information into the computer
on a series of fields and “use the computer to determine correlations
between events and within a type of event” (Center for Army Lessons
Learned, 1996, pl). Even though these points have been identified, no
model or computer package has been constructed assist commanders in

identifying the enemy threat and making the necessary force protection

changes.




III. PURPOSE AND RATIONALE

In Bosnia and other OOTW environments, commanders can capitalize
on the enemy’s lack of deception by monitoring hostile events as
stochastic indicators of the current situation. A statistical model
that monitors and detects changes Eo the situation, both increases and
decreases in the number and type of enemy incidents, would give the
commander a tangible warning of a change in the situation and an
opportunity to review his force protection measures. As stated above,
the need for such a model exists and this need will become more pressing
as the number of OOTW missions increases.v

By monitoring numerous indicators ranging from small gestures to
significant violent activities, commanders in Bosnia can get a complete
picture of the threat they face. The incidents of small gestures, which
are likely to occur often and may be overlooked by the comﬁander, may
serve as a predictor for the likelihood of an occurrence of an act of
considerable violence, such as an outright attack against a SFOR base
that resembles the Khobar Towers bombing.

Such a predictive model would be extremely useful in Bosnia and
would fill a wvoid in the SFOR’s IPB and force protection assessment
processes. It would allow commanders to monitor those indicators that
are important at their specific level. It would prove extremely useful
to units in Bosnia who are dealing with three separate warring factions
who are wundistinguishable from each other and are intermingled

throughout the local populace.
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IV. METHODOLOGY

A. BASIC UNIVARIATE CONTROL CHART METHODS

1. Basic Control Chart Methods

Control Charts are used extensively throughout industry to monitor
production processes to identify instability and unusual circumstances
(Devore, 1995, p685). They enable managers to distinguish between
random fluctuations in the process and a change in the process mean or
variance. Typical control charts plot the data X;, or a function of the
data a(X;), versus calculated upper and lower control limits (Weitzman,
1999, p7). If the plotted data stays between the control limits, the
process is considered in statistical control. If a data plot extends
outside these limits, then the process is considered out of statistical
control and it signals that wvariation other than the usual amount is
present in the process. Control charts enable managers to quickly
identify when the process has gone out of control while preventing them
from making unnecessary interventions in the process when it is in
control. This 1is valuable because huge profits can lost by shutting
down a production line for a week to retool suspected faulty equipment
when the equipment is in fact functioning properly and the end product
is within specifications. Of course, equipment and manufacturing
processes will not run forever without repair. Control charts assist
the managers in identifying when the repairs are needed. No single
chart cohpletely captures all possible shifts in the wvariability in a
process, but Shewhart style control chart and cumulative sum (CUSUM)
charts are two extensively used charts that offer different but
extremely complementary information (Hawkins and Olwell, 1998, p71).

The Shewhart style control chart is very effective for detecting
isolated special causes that lead to large shifts in the data (Hawkins
and Olwell, 1998, p7). It does this by testing the mean of a specifié

characteristic of the product from batches of the product. Isolated or




transient shifts in a process are somewhat common and can occur from
numerous sources within the process. For example, consider taking 20
samples of five bolts each and measuring the hardness of the five bolts.
If one of the samples was produced from a contaminated shipment of iron
ore that resulted in the bolts not meeting the required average hardness
specifications, the mean hardness of the sample would be lower than the
other 19. If the mean hardness of this sample is outside the range of
usual variation around the true mean, the Shewhart chart will identify
this difference by plotting the batch mean outside the control limits.
If the subsequent sample is taken from bolts made from acceptably pure
iron ore resulting in a mean average hardness close to the true mean,
the Shewhart chart will show that the batch mean and the process are in
control (Hawkins and Olwell, 1998, p7).

Shewhart charts have one major limitation in that they are
ineffective in detecting moderate persistent shifts in the data (Hawkins
and Olwell, 1998, p7-9). Returning to the bolt example, if over the
life of the machinery the threading tool used to thread the bolts to the
correct diameter becomes worn, the resulting bolt diameters may slowly
increase. The slight change in average bolt diameters of a particular
batch will not be significant enough to cause an isolated out of control
signal onAithe Shewhart chart. Personnel specifically trained on
Statistical Process Control (SPC) may be able to detect this small shift
by viewing the Shewhart chart and identifying a trend, but the typical
process manager will not. CUSUM charts are often used in' conjunction
with the Shewhart charts to offset this shortcoming because they are
better suited to detected moderate persistent step shifts in process
parameters (Hawkins and Olwell, 1998, p7l1).

CUSUM charts are “tuned” to monitor data from a specific
distribution and to detect a shift in the process mean (Hawkins and
Olwell, 1998, pl38). As with Shewhart charts, CUSUM charts plot data

and control limits against time. The data that CUSUM charts plot,




however, is a calculated cumulative statistic §,, not the raw data as in
Shewhart charts.

This thesis uses the decision interval form of the CUSUM. This
form facilitates wvisual identification of shifts in process mean
(Hawkins and Olwell, 1998, p24). The decision interval form of the
CUSUM is defined by the recursion:

Si=0
S, =0
S, =max(0,S;, +X, ~k")
S” =min(0,S, + X, +k7)
(Hawkins and Olwell, 1998, p25-26)

where S monitors upward shifts in the process mean, S monitors
downward shifts in the process mean, X, is the observation, g is the
process mean, and n is the current iteration number. The k’'s listed
above are different and are commonly distinguished as k* for the upward
shift and k° for the downward shifts. As the equations are written
above, k* is a positive reference value and Xk is a negative reference
value. Some care should be taken, as certain users prefer to use non-
negative values of k’s in their calculations. In this case, k  is
subtracted instead of added.

If the process follows a given distribution with a constant mean
and standard deviation, the values of S, can be considered a random walk
with reflection at the horizontal axis. A line formed by the plotted
S,’s will have an expected cumulative slope of 0 and will infrequently
go outside the control limits. Once the process mean changes, the value
of S, will take on a distribution whose slope is not equal to 0 and the
line will drift in the direction of the change. This drift will
eventually take the plot outside the control limits signaling a change
in the process mean. The calculation of a cumulative sum statistic

enables CUSUM charts to distinguish a moderate shift in the mean better




than a Shewhart Chart. This cumulative property, however, also requires
that the CUSUM chart be “re-tuned” for the new process mean and
restarted each time it signals out of control (Hawkins and Olwell, 1998,
p26)

Upper and lower control limits are critical in the responsiveness
of the statistical control charts. They are designed to distinguish
between usual variation in the process and shifts. They are calculated
using a function of the process distribution when the distribution is in
control. For Shewhart charts with normal data, the upper and lower
control limits are frequently calculated as standard deviations of the
batch mean above and below the in control mean. In equation form, the

upper/lower control limits are set at:

mo

N
(Hawkins and Olwell, 1998, p7)

where m is the number of standard deviations.
As in the example above, a batch of bolts with a mean hardness

greater than or less than m standard deviations from the mean will cause

an out of control signal on the Shewhart chart. Commonly, control
limits are set at 3 standard deviations (m = 3) above and below the
correct mean and are referred to as 3 sigma limits. As with the

Shewhart charts, CUSUM charts have upper and lower control 1limits for
signaling when the process is out of control. Even though they perform
the same function, their calculation and theory is very different.
CUSUM control limits are functions of the Average Run Length (ARL) of
the chart, the decision inter&al h, and a reference value k (Hawkins and
Olwell, 1998, p32). These three factors, their calculations and their

relationships, will be discussed later in section 3.
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2. Poisson Univariate Control Charts Methods

Poisson control charts are important because many processes and
natural random phenomenon can be better modeled as Poisson rather than
Normal, especially when faced with count data (Hawkins and Olwell, 1998,
pli0, 111). Unless the Poisson rate parameter A is large, the Shewhart
3-sigma control limits used for normal data are inadequate. This is due
to the asymmetry of the Poisson distribution compared to the symmetry of
the Normal distribution. For Poisson data, the upper and lower control
limits are determined from the probability 1limits of the Poisson
distribution with the given rate A (Weitzman, 1999, p9).

As stated earlier, CUSUM charts do not plot raw data versus time
as do Shewhart charts. For Poisson data when the rate parameter A is
known, CUSUM charts plot cumulative sums of the déviations of the sample
values X; from a reference value k. The upper and lower control limits
for each additional data point rely on the previous statistic S,.;, the
current data value X,, and the value of k as shown in the equations:

S* =max(0,S, , + X, —k*)
S =min(0,S,,+X, k")
(Hawkins and Olwell, 1998, pll2-113)

n-1

n-1

The values of k% and k° for Poisson CUSUM control charts are
functions of the in control mean and the target out of control limits
for the mean. The in control mean is the mean of the process being
evaluated when the process is considered to be in control. The target
out of control limits for the mean are the upper and lower limits for
which the process mean is be considered in control. The shifts from the
in control mean to the upper and lower limits for the mean are the

shifts that CUSUM charts will have the optimal speed of detection.
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They are calculated as follows:

_ z’u _j'o k— — ﬂ‘d _ﬂ'o
In(4,)—1n(4,) In(4,) - In(4,)

+

Where A, is the in control mean
Aq is the out of control mean for a downward shift

A, is the out of control mean for an upward shift
(Hawkins and Olwell, 1998, pll3).

All previous discussion of control charts has referred to non-
self-starting control charts where a large amount of historical data is
available. In order for those control charts to be effective, a long
period of time is required to collect data when starting a new chart or
when ‘“retuning” a CUSUM chart to the new mean after it has detected a
shift in the process parameters. This 1is not attractive to
manufacturers who view this “set up” time as a period of no control.
Military commanders of units that are the first to deploy to an OOTW
environment will not have direct historical data to tune a CUSUM chart.
Most unit rotations in Bosnia and elsewhere are typically between six
and twelve months. The commanders and their units will most likely
rotate out of the environment before they have a time to collect enough
data for such charts. CUSUM charts are then only useful to subsequent
units if sufficient data has been previously collected and there has not
been a change in the process that requires retuning. The volatile
nature of OOTW environments, therefore, nearly renders standard non-
self-starting CUSUM tools useless to military commanders.

Self-starting control charts enable the user to detect changes
soon after implementation of the control charts. They do not require
large amounts of historical data to set up and can detect shifts in the
process after only a few data points, making them applicable and useful
to military commanders in OOTW environments. Weitzman (1999), in his
thesis, applied self-starting control chart methodology to a plausibly

Poisson process of police use of force. This thesis uses his
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methodology for Univariate analysis because, as we shall see, the random
nature of enemy incidents in OOTW can be plausibly considered Poisson.

For self-starting Poisson Shewhart charts, the upper and lower
control limits are developed by calculating probability limits that are
conditioned on the sum of a series of values X; (Weitzman, 1999, pl3).
The conditioning argument is based on the property that the Poisson
distribution is infinitely divisible and takes the form:
P(Xn =x, Iixi = §) = binomial (S,1/n) (Hawkins and Olwell, 1998, pl75).

i=1

Weitzman (1999) implementéd this formula in Microsoft Excel using
the critical binomial wvalue function CRITBINOM(S,p,d). In CRITBINOM,
the parameter S 1is the sum of the preceding n observations, the

parameter p is 1/n where n is the number of time periods or data
batches, and « is the confidence level required. For example, to

calculate the upper control limit for the 3*¢ observation, S would be

the sum of these three observations, p = 1/3, and @ would be a
percentage such as .995. This same process 1is used for the lower

control limits except @ would be 1 minus the «a used for the upper

control limit, or 0.005. Using the a’'s above would produce a 99%
confidence interval for the Shewhart control 1limits of the 3%
observation. It should be noted however, that due to the granularity of
discrete functions, an exact 99% confidence intefval may not be
obtained. The granularity of the discrete functions may produce values
close to the target confidence interval, but not exact. For example,
discrete function that desires a 99% confidence interval may obtain a
99.2% or a 98.8% confidence interval due to the discrete input values.
The CRITBINOM function, however, requires upper and lower control
limit wvalues for the first data point. This thesis uses probability

limits, entered by the user, to calculate these initial control limits.

The in control test ARL for the first data point depends on the
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probability limits, or confidence interval chosen. Although it only
affects the ARL of the first point, the choice of probability limits
will be discussed in detail, to ensure understanding and maintain
consistency throughout this analysis.

The in control ARL, false alarm rate, is derived from the negative
binomial distribution when checking for the first error, and which
simplifies to a geometric series. 1In equation form, the in control ARL

is solved as follows:

1
‘incontrol = 1 _ prob (1)
where prob is the probability 1limits for the first data point. To

obtain a desired in control ARL, this equation can be algebraically
manipulated to solve for the appropriate probability limit. For
example, if the proper in control ARL is 400, the appropriate
probability limit to use is .9975, or 99.75%.

Figure 1 shows an example of a Poisson Self-starting Shewhart
control chart using Poisson. generated data with a mean of 3. The
initial upper and lower control limits were calculated as 7 and 0 using
a 99% probability limit. Using the CRITBINOM function to calculate the
subsequent control limits allows the limits to change over time as
shown. Upward shifts signal a departure if the value is greater than or
equal to the upper control limit. Lower shifts, on the other hand,
signal a departure if the value is strictly less than the lower control
limit. Data point 28 signals a departure because it is plotted on the

upper control limit. This enables the user to identify this point as an

isolated departure from the mean.
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Figure 1. Poisson Self-starting Shewhart Control Chart.

Data is generated from a Poisson distribution with a mean of
3. Time periods are measured on the X-axis and number of
incidents is measured on the Y-axis. Initial upper and lower
control limit values are calculated from Poisson probability
limits. Subsequent upper and lower control limit wvalues are
calculated using Excel’s CRITBINOM function.

For self-starting CUSUM charts where the parameter A is unknown
the CUSUM chart plots the cumulative sum of the deviations of the
“transformed” sample values, Y, from a reference value k. Using the
reference value k, which is calculated as in the non-self-starting
CUSUM, and the transformed sample value Y, the self-starting CUSUM

control limits are calculated as follows:

St =max(0,S

n

S, =min(0,S

n

+Y,—k")
+Y,—k").

n-1
n-1
This is a slight difference from the non-self-starting CUSUM
method but the role of this transformed value, Y,, is significant and Y,
development demands additional explanation.
For insight into Y,, assume the process being studied followé a

Poisson distribution and the monitored wvalues are discrete count value

X,. Also, assume that the in control mean, A,, is unknown. The sample

mean, X, is the appropriate statistic, i.e. maximum likelihood
estimator, for estimating A,. Now, let w; = iX and condition on W;
which yields X;~binomial;(W;,1/i). This distribution is parameter free

and X; does not rely on the unknown mean A,. Therefore, “if the process
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mean shifts from A, to A;, then the conditional distribution of X,

becomes binomial with a probability __iq_____” (Hawkins and Olwell,
. (n=-DA, + 4,
1998, pl75). A change in the process mean will change the probability

upward if A; > A, and downward if A; < A,. Monitoring the changes in the

binomial probability will determine if the mean has shifted.up or down.

This conditional distribution for X, is used to calculate the
cumulative probability A, =Pr[Bi(W,6,1/n)< X,] (Hawkins and Olwell, 1998,

pl76). Unlike the continuous case, A, can only take on a limited number
of wvalues because X, can only assume discrete values 0,1,2,.. W,. The
values of A, are distributed independently even though the values are
limited. This can be seen from Basu’s lemma (Hawkins and Olwell, 1998,
pl76).

An mus.t now be transformed for use in a CUSUM chart. One point of
concern is the cases where A, = 1. This occurs when the initial
sequence of X,’s are 0. A, will equal 1 fo:; the first non-zero X,. This
requires attention in the execution of the transformation.

Transforming X, to a Poisson variate Y, with parameter m is done

by determining the value of Y, that minimizes the equation:

Y, oMol
Y ———-4, (Hawkins and Olwell, 1998, pl77).
j=0 J!
In the cases where A, = 1, Y, is determined by setting ¥, = X,. This

transformation is done to get a Y, that is Poisson with mean m, where m
is an estimated process A. But because of the graininess of the values
of A, brought on by the discrete values of X, this 1is not exactly
possible (Hawkins and Olwell, 1998, pl77). It is however, very close if
the estimated mean is close to the true distribution mean (Weitzman,

1999, pi8). The calculation of Y, in the Poisson self-starting CUSUM
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control chart method developed by Hawkins and Olwell is done using a

Visual Basic macro deﬁeloped by them.

Figure 2 shows a Poisson self-starting CUSUM control chart using
the same generated Poisson data as in Figure 1 with mean equal to three.
The upper and lower control limits were calculated using Fortran based
software package ANYGETH.exe with an average run length (ARL) of 100.
ANYGETH.exe and ARL’s will be discussed in detail in the next section,

section 3.

Persistent Departures

Cumulative Sn+

Cumulative Sn-

——— Upper Limit
Lower Limit

Time Period

Figure 2. Poisson Self-starting CUSUM Control Chart. Data

is generated from a Poisson distribution with a mean of 3.

Time periods are measured on the X-axis and the calculated

values of the cumulative statistics S or S are measured on

the Y-axis. The target in control mean is 2.95. The out of

control mean for an upward shift is 4.4 and the out of

control mean for an downward shift is 1.5. The control

limits are set at 6.8 for an upward shift and -4.4 for a

downward shift. The average run length (ARL) is 100.

3. Average Run Length and CUSUM Control Chart Limits

Poisson self-starting CUSUM charts require five parameters before
they can be run. The five parameters are the average run length (ARL),
the upper and lower control limits (h* and h™), and the reference values
(k* and k7) (Hawkins and Olwell, 1998, p44). These parameters are
interrelated and can be calculated using available computer packages
such as ANYGETH.exe and ANYGETARL.exe. Using a software package such as
ANYARL.exe allows one to calculate the associated ARL with a given k and

h, where the software package ANYGETH.exe calculates the upper and lower

control limits given a k and an ARL. It is common to select the ARL
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based on the discussion below and calculate the reference value k from
the target in control and out of control means. ANYGETH is then used to
solve for the upper and lower control 1limits. Directions for the
software package ANYGETH developed by Hawkins and Olwell, which is used
in this thesis, are listed in Appendix C.

The ARL for a chart is defined as the expected number of time
periods (runs) before the chart signals a shift when in fact none has
occurred (Montgomery, 1985, p287). It is commonly referred to as the
average time between false alarms. It is important to note that there
is a trade off when determining the ARL that is analogous to the trade
off between Type I and Type II error in classical hypothesis testing.
In hypothesis testing, reducing the amount of Type I error increases the
amount of Type II error in the test. In CUSUM charting, increasing the
ARL decreases the number of false alarms that the chart will signal, but
it also increases the time required by the CUSUM to detect a shift.
Decreasing the ARL increases the number of false alarms, but decreases
the time required to detect a shift (Hawkins and Olwell, 1998, p33).
The choice of the proper ARL depends on the concerns of the decision-
maker and the costs associated with a false alarm énd a missed shift in
the process.

Many manufacturing processes use ARL’s higher than 1000 because
the costs associated with a false alarm, which often include shutting
down the process, can be enormous compared to harm of producing a
improper product. Take for example a production line of the Ford Motor
Company that produces 10 sport utility vehicles an hour. Ford receives
a profit of $10,000 per vehicle. Managers may use a high ARL when
checking the wvehicles for defective window seals. The cost associated
with not detecting a defective window seal, repair at the dealership, is
small compared to the cost of shutting down the assembly line for an
hour because of a false alarm, $100,000. On the other hand, managers

may use a small ARL when checking for defective brakes. In this case,
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the costs of shutting down the assembly line for an hour, $100,000, is
small compared to the recall of wvehicles and potential liability costs
(economic and human) associated with an accident caused by a faulty
brake mechanism.

It is important to note that ARL’s used in combined tests have an
additive affect on the overall process ARL. Combined tests are any
tests used simultaneously on a data set. Upper and lower control limits
are an example of two tests that when used together constitute combined
tests. For example, if ARL‘s of 100 are used in 2 combined tests, say
an upper and a lower control 1limit, then the combined test can be
expected to produce 2 false alarms, 1 for each limit, in 100 periods.
The process ARL is therefore 2 in 100, or 1 in 50, not 1 in 100. Van

Dobben de Bruyn (1968) showed that for combined systems, a conservative

is as follows:

|
method of calculating the test ARL’s to achieve the proper overall ARL
|
|

1 1
=y (2)
ARLcombined ARLte:t
(Hawkins and Olwell, 1998, p55). This thesis uses different test ARL's

in order to achieve an overall or combined ARL of 100 for each type of
analysis. The individual univariate analysis of the three separate data
categories has four tests: Shewhart upper control limit, Shewhart lower
control limit, CUSUM upper control limit, and CUSUM lower control limit.
A test ARL of 400 is used for each of these four tests in order to
obtain a combined ARL of 100 for each individual data category.
Multivariate analysis uses a total of 16 tests. From equation 2,
a tesf ARL of 1600 is desired to obtain a combined ARL of 100. 12 of
the 16 tests in the multivariate analysis use an ARL of 1600. However,
four tests in the nonparametric multivariate analysis use confidence
intervals for the upper and lower control limits. These confidence
intervals affect the in control ARL’s similar to the probability limits

explained above. Using an ARL of 1600 in Equation 1 and solving for the
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confidence interval, results in a confidence interval of 99.9375%.
Rounding this confidence interval to 99.94% for simplicity altered the
ARL to 1667. This is however a sufficiently close approximation to the
desired ARL of 1600. A detailed discussion of the different ARL’s used
in multivariate analysis and their calculations are explained in Chapter
V, Section A2. The combination of these different ARL’s using equation
2 resulted in an overall combined ARL of 101.015 for the multivariate
analysis, which is sufficiently close to 100.

The methods used in calculating the ARL’s or upper and lower
control limits in CUSUM charts, including those used in computer
packages, take three common forms: solving integral equations, solving
discrete Markov chain approximations to the integral solution, and using
simulation (Hawkins and Olwell, 1998, pl53).

The integral equation for continuous variables is as follows:
L(z2) =1+ L(O)F(k - z)+ Joh L(x)f(x+k—-z)dxe for each z € (0,h) (Hawkins and

Olwell, 1998, pl54). L(z) is the average run length for the CUSUM that
starts at S, = ZzZ. The first .component of this eguation is the
probability that the chart will test another value. This value is 1
because at least one more observation is always drawn for z € (0,h).
The second component, L(0)F(k-z), is the probability that the next data
value returns the CUSUM to zero (F(k-z)), miltiplied by the average run
length from zero (L(0)). The final component “is the integral Qf_the
average run length for the next value of the CUSUM if it is between 0
and h, multiplied by the probability that this next wvalue occurs”
(Hawkins and Olwell, 1998, pl54).

The software package ANYGETH uses the discrete Markov chain
approximation to the integral solution to solve for the upper and lower
control limits. The discrete Markov chain approximation to the integral

solution solves the discrete analog of the integral equation above.
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This analog takes the form L(Z)=1+2L(i)Rs- , where R; ., 1is the Markov
i=0

transition matrix not including transitions to and from the last state.
The last state is not included because the ARL from State M+l is always
zero (Hawkins and Olwell, 1998, pl55). The Markov equation in matrix

form is as follows: (I-T)A =1, where I is an identity matrix, T is the

transition probability matrix, A is a vector of length M+1 of ARL values

for CUSUM’'s starting in the corresponding state, and 1 is a M+l vector
whose values are all 1. Solving the eguation results in the appropriate
ARL for the given h and k (Hawkins and Olwell, 1998, pl55). Because
they are interrelated, ANYGETH solves for the wvalue of h given an ARL
and k.

The third method, simulation, involves simulating the process used
to calculate the CUSUM, determining and recording the run lengths, and
averaging the run lengths to determine the ARL. Although work has been
done in improving the precision of the estimates for the ARL’s,
simulation remains an intensive and inefficient method (Hawkins and
Olwell, 1998, pl56). In this thesis, simulation is not used to
calculate the ARL. Instead simulations are used to verify the theory
and software developed in this thesis. Simulations, run multiple times
using generated déta sets with known parameters, verify the accuracy of
the resulting CUSUM charts.

4. Discussion of CUSUM Optimality

CUSUM methods have been shown to possess various optimality
properties. In the context of Statistical Process Control, optimality
is reserved for the scheme that is quickest to detect a shift in the
process from in control to out of control. *“Or more formally, among all
procedures with the same in-control ARL, the optimal procedure has the
smallest expected time until it signals a change, once the process

shifts to the out-of-control state” (Hawkins and Olwell, 1998, pl38).
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Moustakides (1986) proved that CUSUM charts are optimal in this
sense. “Among all tests with the same in control ARL, CUSUM has the
smallest expected run length out of control” (Hawkins and Olwell, 1998,
pl38). CUSUM charts are hoWever “tuned” for a specific shift in a
specific distribution, and therefore, the CUSUM is optimal for detecting
only this specific shift. A different CUSUM would be optimal for
detecting other shifts. This would greatly diminish the applicability
of CUSUM charting, if it were not for the robust performance of CUSUM.
CUSUM charts are robust in that the optimality qualities nearly hold for
shifts close to that which it was designed to detect. “That is to say,
while the CUSUM for detecting a one-standard-deviation shift is only
optimal diagnostic for that particular shift, it does nearly as well as
the optimal CUSUM for all shifts “not too far” from one standard
deviation” (Hawkins and Olwell, 1998, pl139).

The robustness of CUSUM charting methodology can be checked by
comparing the out of control ARL’s calculated by ANYGETH.exe for a
targeted shift to those calculated by ANYGETH.exe for a nearly

equivalent shift using the same ARL and the same reference value k. For
example, a process with a target in control A, = 3 and an out of control

A = 6 will result in ANYGETH.exe returning an exact reference value of

k = 4.328. In this example, the exact reference value of k = 4.328 is
rounded to a value of k = 4.4. Using an ARL of 100, ANYGETH.exe

calculates an in control ARL of 116.07 and an out of control ARL of 3.5.
Running ANYGETH.exe again with the same in control A, = 3, the same
rounded value of k = 4.3, and the same ARL of 100, but with an out of
control A, = 5, the resulting in control ARL = 116.07 and the resulting
out of control ARL = 6.

Because both executions of ANYGETH.exe use the same in control A, = 3,
the same rounded value of k = 4.3, and the same ARL, they are both tuned

to optimally detect a shift from Ay = 3 to A, = 6. The in control ARL’s
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are the same because tuning the charts for the same shift results in the

same false alarm rate. However, the out of control ARL’s are slightly
different because the out of control ARL’s are the measure of how

quickly the CUSUM charts detect the shift in the process (Hawkins and

Olwell, 1998, p36). The out of control ARL for a shift of A, = 5 is

larger than the out of control ARL for the shift of A, = 6 meaning that

it will take longer for the charts to detect the smaller shift than the
larger shift. The robustness of the CUSUM charts is evident here in
that even though the charts were not specifically tuned for the shift of
A, = 5, they will none the less detect the smaller shift. The charts
require additional time to detect the smaller shift. This detection
time difference is the difference between the two out of control ARL'’s,
or 2.5 time periods. Depending on the situation, this difference is
minimal. Users can therefore capitalize on the robustness of CUSUM
charting and apply them with confidence knowing that the charts,
although not optimal, are nearly so.
B. MULTIVARIATE CONTROL CHART METHODS

Multivariate control charts are used to analyze a collection of
process measurements, not Jjust one measurement as in the univariate
control chart methods described earlier. Two major benefits of
multivariate control charts are that they are more sensitive to multiple
shifts than are univariate control charts used individually and they
also improve the diagnostics of the shifts. Better diagnosis of the
nature of the change will enable managers to better identify and fix the
cause of the shift. Using a published example, the quality of coal
produced from a washing plant is judged based on the yield and the ash
content of the coal after it has undergone the washing process. TwO
factors that influence the final product are the effectiveness of the
washing process and the quality of raw coal that was used in the

process. If a shift occurs in the amount of ash in the produced coal,
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univariate control charts will detect the shift and may attribute the
shift to a change in the washing process. It may in fact be a result of
a change in the quality of the raw coal shipment used. Multivariate
control charts will detect the shift and help attribute the cause of the
shift to the correct cause. In the above example, multivariate control
charts would attribute the shift to the quality of coal used and prevent
the managers from searching for a problem in the process (Hawkins and
Olwell, 1998, pl190).

The Normal distribution is the basis for much statistical work
done with multivariate data. This 1is a result of the Normal
distribution having preferred statistical properties and because, for
multivariate work, there are >“few other manageable widely know
distributions available” (Hawkins and Olwell, 1998, pl9l). One of the
more favorable properties of the multivariate normal distribution is
that its marginal distributions and conditional distributions are also
normal. It is also wuseful to know that linear combinations of
multivariate normal variates are also normally distributed (Anderson,
1984, p24). In general, the multivariate normal distribution has often
been found to be a sufficiently close approximation to the analyzed
population, justifying its use (Anderson, 1984, p4). These favorable
properties, as well as others, do not wusually hold for other
distributions, making multivariate normal the distribution of choice.

We will use the following parameterization in our mulitvariate
analysis. p is the number of related measurements taken and X, is the
n*® sample of the p-component process measurement. The multivariate

normal assumption then states that the vectors X, will follow a common

multivariate normal distribution with a mean vector u and a covariance
matrix 2. In equation form: X,~N(u,2) (Hawkins and Olwell, 1998, pl9l).

The covariance matrix X is the key factor in capturing the relationships

between the different process measurements made on the same sample and
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is responsible for Dbenefits of multivariate control charts over
univariate control charts. If the process measurements are
uncorrelated, the off diagonal elements of the covariance matrix will be
zero. In this case, it may seem that multivariate control charts are no
better than a collection of univariate control charts. This however is
not entirely true, in that multivariate control charts may still offer
better insight if the cause of a shift effects the multiple properties
measured (Hawkins and Olwell, 1998, pl9l1). It is important to note that
the model assumes that the in control X, vectors are independent for
different n. That is to say that although the p-measurements taken from
sample n may be correlated, they are independent from the p-measurements
taken in sample n+l. It is also important to note that the measurements
in the X, vector must relate to the same product, not necessarily the
same time (Hawkins and Olwell, 1998, pl191-192). In the coal washing
example, if two measurements are being taken on a given sample of coal,
one before it is washed and one after it is washed, the observer must
ensure that the before washing measurement stays linked with the after
washing measurement of the same batch of coal. If the measurements were
taken at the same time, then the before washing measurement and the
after washing measurement would come from different batches of coal and
would be meaningless.

In graphical terms it 1is clear to see the actions of the
multivariate methods. Using the coal washing example, if the yield of
the washed coal is plotted against the ash content of the washed coal,
the plot will assume some form of a bivariate distribution depending on

the correlation between the two variables, as shown below:
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Figure 3. Graphical Depiction of Multivariate Methods.
Measurements of coal vyield per shipment on the X-axis
against the corresponding ash content of the shipment on the
Y-axis. The data point X lies in the range of both ash
content and coal yield, but is an outlier to the bivariate
distribution of the data.

From Figure 3, it is clear that the data point *“X” does not follow the
bivariate distribution of the other samples. This difference of sample
vx” from the other samples may be caused by an increase in coal quality

that offsets a decrease in the effectiveness of washing process on that

sample. Multivariate methods will detect this difference and will
signal a shift in the process from in control to out of control. The
data point “X” may not signal a shift in Univariate methods. It lies

inside the range of ash content and coal quality, and therefore may be
inside the separate control limits for each variable.

For multivariate normal Shewhart control charts, Hotelling’s T2
statistic is the most powerful test statistic. This assumes that the p-
component vector X is multivariate normal, X,~N(u,2), and that 2 is
' known. The preferred Hypothesis test is to test the null hypothesis H,:
M = M,, against the alternate hypothesis H,: U # U. This test is
targeted at any shift in pu, and from multivariate theory, the most
powerful affine invariant test statistic for H, against H, rejects the
null hypothesis if the value of 7¢ is large. 72 is calculated as

follows:

1

Tz = (X" —'u"N—x )/E;-I(X" _’u"n-s)
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and is compared to the Chi Squared with p degrees of freedom, or T? ~ #°
(Hawkins and Olwell, 1998, pl192).

Affine invariant tests are test statistics that are “unaffected by
a full rank linear transformation of the vector X", i.e. Y = AX (Hawkins

and Olwell, 1998, pl92). The restriction to affine invariant tests is

used when the possible shift of 4 is unknown. If there is knowledge

about the type of shift in g that might occur, the affine invariant
restriction can be discarded. The hypothesis test now used will test

the null hypothesis H,: 4 = W,, against the alternate hypothesis H,: u =

M. This test statistic for H, against H,is 7z = (x - 4 )IE" (f, - u,) -

7 follows the normal distribution shown below with j,:;nA’zlq A where A

is the size of the shift in the mean:

Z~NQ,A) H=4,

Z~NAA) p=p

(Hawkins and Olwell, 1998, pl92).
This 1is a significant improvement over the T? test because it
essentially shows the test where to look for a shift. Also, the
improvement this test makes over the T°? test gets greater as p gets
larger (Hawkins and Olwell, 1998, pl193-194). This method is presented
to increase understanding of the material. This thesis did not consider
this method in analyzing the SFOR data set because there is no
information or knowledge about the type oﬁ shift that might occur.
In multivariate CUSUM control charts, as in univariate CUSUM

control charts, the issue of detecting smaller but persistent shifts in
the data still requires a method that accumulates information across

successive observations. The univariate recursion to address this issue

is as listed earlier:
S, =max(0,S,, + X, k")
S; =min(0,S, , + X, —k7)

n
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In the multivariate case, however, a vector X, replaces the scalar X,.
The best application of this wvector in the Univariate recursion is

unclear (Hawkins and Olwell, 1998, pl95).

Crosier (1988) introduced a multivariate CUSUM method that
accumulates on the scale of the vector X.  Accumulating on the vector X
initializes the CUSUM vector S, to a zero vector and alleviates the
problem of when the shift is in a direction other than that proposed.
The appropriate recursion is as follows:

0 for C, <k

Sn = Sn—-l +Xn _:uo
1-k/C,

for C, >k

where Cn=(5pr+Xn—#oY§T](SP1+XH‘/%) (Hawkins and Olwell, 1998, pl95).

Note: C,, S,, Sp-1. M, are vectors, 2?1 is a matrix
This recursion causes the CUSUM to signal if S;Z“Sn is greater than the

scalar decision interval h. This recursion uses the T? metric for its
final decision. “It has no known optimality properties, but does appear
to have good practical purpose” (Hawkins and Olwell, 1998, pl96).

C. DEVELOPED THEORY OF THE NONPARAMETRIC MULTIVARIATE CONTROL CHART
METHODS

1. Theory

As stated above, the multivariate Normal distribution forms the .
basis for typical multivariate control chart methods. The multivariate
normal distribution has robustness for other distributions, but the
robustness depends on assumptions between the multivariate normal and
the specific distribution of the process. This thesis chose to
initially model the SFOR Incident Data as Poisson. The Poisson
distribution was chosen because the incidents of enemy actions in OOTW
are uncboféinated and stochastic counts, making them plausibly Poisson.

Multiple tests, shown in Appendix D, verified that the data could be

considered Poisson. But because there is not a commonly accepted model




for multivariate Poisson data, nor is there a multivariate scheme for

Poisson data, this thesis chose to use nonparametric techniques for the
multivariate control chart analysis. A nonparametric method will forego
any need for assumptions about the data being Poisson or any need for
multivariate Normal approximations to the multivariate Poisson. In
effect, nonparametric techniques will be applicable to all data sets
regardless of the underlying distribution (Anderson, 1984, p5).

The multivariate analysis method developed in this thesis consists
of two parts. First, univariate analysis is conducted simultaneously on
the three data categories and will be referred to as simultaneous
univariate analysis to avoid confusion between it and the individual
univariate analysis. Second, a nonparametric permutation technique,
developed in this thesis and described in detail below, is conducted to
analyze the multivariate aspects of the data categories. This will be
referred to as nonparametric multivariate analysis. The crucial concept
in these two parts of the multivariate analysis method is that' a
persistent departure in any one of the CUSUM charts, simultaneous
univariate CUSUM charts or the nonparametric multivariate CUSUM charts,
requires that all charts be retuned and restarted at the originating
time of the detected shift. This 1is done to maintain the time
relationship of the data categories and to maintain the correlation
between the data categories.

Simultaneous univariate analysis is similar to individual
univariate analysis as previously explained except for two key issues.
As stated above, the simultaneous univariate analysis control charts, as
well as the nonparametric multivariate control charts, must be retuned
and restarted when a persistent shift is detected in any of simultaneous
univariate CUSUM control charts or the nonparametric multivariate CUSUM
control chart. Also, the combined ARL in the analysis is now dependent
on the 16 different tests contained in the simultaneous univariate

analysis and the nonparamteric multivariate analysis. The 16 tests are
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as follows: upper and lower control limits for each data category in the
simultaneous univariate Shewhart control charts, upper and lower control
limits for each data category in the simultaneous univariate CUSUM
control charts, an upper and a lower control limit in the nonparametric
multivariate Shewhart control chart, and an upper and a lower control
limit in the nonparametric multivariate CUSUM control chart.
Calculating the appropriate ARL’s for these 16 tests in order to obtain
the correct combined ARL is explained in detail in Chapter V, section
A2, Multivariate Parameters.

The nonparametric permutation technique developed for the
nonparametric multivariate analysis of the data extends common
distribution free based methods and applies it to multivariate control
charts. This technique begins by taking numerous permutations of the
data. For each permutation, the 7%, S,*, and S, statistics, £from
equations 3, 4, and 5 below, were calculated for each time period and
then stored in separate arrays for each time period. After all
permutations have been conducted, each array is sorted from lowest to
highest. The upper and iower control limits for each time period is
calculated from this ordered array of permutatéd statistics. For
example, after taking 1000 permutations of the data, each time period
will have three corresponding arrays of 1000 T statistics, S
statistics, and S, statistics. The arrays are sorted from lowest to
highest and for a 99% confidence interval, the 0.5% and 99.5% percentile
values in the arrays are used_as the upper and lower control limits for
each time period. The control limits for the multivariate Shewhart
charts wuse the T° statistic. The upper contrél limit for the
multivariate CUSUM charts use the S, statistic where as the Ilower
control limit for the multivariate CUSUM charts use the S,  statistic.

As stated above, multivariate Shewhart control charts’ upper and

lower control limits are established from the distribution of the T2
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statistic for a two-sample problem. This T? statistic tests the null
hypothesis that the mean of the first normal population is equal to the
mean of the second population and the covariance matrices are egqual but
unknown. In this test, 7° is calculated as follows:

T2___ NINZ

= X ~Xa)'S7 (X =X (3)
T K X B0 =X

where: N; is the number of samples in the 1%* population
N, is the number of samples in the 2 population
X, is the observation at time period n

X o1 is the average of the observations up to time period n-1
21, is the inverse covariance matrix at time period n-1.

Under the assumption of normality, it is distributed as T? with N; + N, -

2 degrees of freedom and the critical region is:

N, +N,-2

T > W, + N, =2)p F,yv.n-pa(®) (Anderson, 1984, pl67).
N +N>~p

(N,+N,-p-1) i
In order to make this a self-starting test, this thesis calculated
the T? Statistic iteratively, testing if the next observation in the
sample data is statistically similar to the mean and covariance of the
previously observations. For example, on the 5% permutation, the

covariance matrix Aof the data and the means of the wvariates are
calculated for the first four observations. N; is equal to four, N, is
always equal to one, X, is the fifth sample observation, ;Fp; is the
mean of the first four observations, and X7, ; is the inverse covariance
matrix of the first four observations. Such a step is done for each
data observation after an initial start up time. The initial start up
time is required to be at least as many periods as the number of data
variates you are analyzing in order to obtain a non-singular covariance
matrix. Using three data variables, simulations revealed that start up
periods of 4, 5, and 6 resulted in near singular covariance matrices and
extreme values of T° which skewed the graphs considerably. Using 7

periods for the start up time was sufficient to avoid this issue.
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The chart in Figure 4 is a plot of the calculated T? statistic
from generated multivariate Poisson data versus the appropriate F
values, based on an assumption of normality. The graph shows numerous
upward and downward transient shifts, or departures, in the process when
in fact there should be none. The misleading nature of this graph

clearly shows that assuming normality is not the correct method to use.

F Statistic Shewhart Control Chart
20
15 4
o —~—99.5% Fn,p
< 10 o
- fLA f\ - 1 —=— 5% Fn,p
5 e LA a1 | TA2 Stat
0 mmmbeatt A T
- - 2 3 & 5 8 =%
Time Periods

Figure 4. Shewhart Control Chart of T? vs F Distribution.

Multivariate Poisson generated data with mean equal to 3.

Time periods are measured on the X-axis and the values of

the calculated T? statistics are measured on the Y-axis.

Upper and lower control limits are derived using the 99.5%

and .5% values of the F distribution.

In an attempt to improve this control chart, the nonparametric
permutation technique discussed above was used to get the 99% confidence
interval of the T? statistic from equation 2 for each sample period.
When these were used as the upper and lower control limits, the graph

better reflected the consistency of the data with no isolated departures

as shown in Figure 5.
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Nonparametric Multivariate Shewhart Control
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Figure 5. Nonparametric Multivariate Shewhart Control Chart
Without Departure. Multivariate Poisson generated data with
mean equal to 3. Time periods are measured on the X-axis and
the values of the calculated T° statistics are measured on
the Y-axis. Upper and lower control limits are derived using
the nonparametric permutation technique.

Applying the nonparametric permutation technique with a 99%
confidence interval to a data set containing an isolated departure at
time period 37 is shown in Figure 6. The chart signals an isolated

upward departure at time 37.

Nonparametric Multivariate Shewhart Control
300
250 E
200 [\ ——99.5% T2
138 i —— 5% TA2

R e s
50 ¥ vesrestnty as
0

TA2

1 6 11 16 21 26 31 36 41

Time Periods

Figure 6. Nonparametric Multivariate Shewhart Control Chart
With Departure. Multivariate Poisson generated data with
mean equal to 3. Time periods are measured on the X-axis and
the values of the calculated T° statistics are measured on
the Y-axis. Upper and lower control limits are derived using
the nonparametric permutation technigue. An isolated upward
departure is detected at time period 37.
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This graph signals the upward departure at time 37 as expected.
The chart plots subsequent time period observations inside the control
limits verifying that this is an isolated departure in the data.

We created the isolated departure by viewing the data in a 3-
dimensional graph and then inserting a point that lies outéide the
data’s multivariate contours. The 3 dimensional graph of the data set

with the outlier inserted is shown below in Figure 7.

] -

[ % [Plot4]Graphex2

REEIS

O Rew lin trend
00 to e(0IH}

i [J aza Scaling

Pt37

/ Isolated

Outlier

EOrock OO rarch OO kot 0D vaw

Figure 7. 3-dimensional Graph of Generated Poisson Data.
The mean of the Poisson data is 3. To create the isolated
departure, a multivariate data point that lies outside the
data’s multivariate contours was inserted at period 37.

For the self-starting nonparametric multivariate CUSUM, the upper
and lower control limits were calculated from a 99% confidence interval
of the permutated S.* and S, as shown:

S* =max(0,S, , +T,” —k*)
S. =min(0,S,, +T,> -k) -

There is no current theory for the calculation of multivariate

nonparametric reference wvalues. It can be shown from the equations,

however, that the reference values, (k% and k™), affect the slope of the

34




will continually subtract much more than the current value of T?.

average values of T2.

upper and lower control limits and should be close to the corresponding

If they are not close to the average value of T{ the upper and

in Figure 8, for example, if the reference value k* is too large,

upper control limit will converge towards zero because, on average,

Nonparametric Multivariate CUSUM, K+= 15, K-= 1,
Winsorizing Constant = 10

0
05 | Kgﬁ kL3 ?5? o ﬂ%? —e—99.5% Sn+
s x| ¥ 9
Sn - Sle —m— 0.5% Sn-
1.5 A —a— Data Sn+
2 —>»¢— Data Sn-
2.5
Time Periods

Figure 8. Nonparametric Multivariate CUSUM Control Chart
Where k' is too Large. Time periods are measured on the X-
axis and the calculated values of the cumulative S and S,
statistics are measured on the Y-axis. The upper and lower
control limits are calculated using the nonparametric
permutation technique. Large k' causes upper control limit
to converge on zero.

If the reference value k¥ is too small, as shown in Figure 9,

corresponding control limit will diverge away £from zero because,

average, you will continually add more than the current value of T2,
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Nonparametric Multivariate CUSUM. K+= 2. K-= 2.
Winsorizing Constant = 10
100
80 ——099.5% Sn+
" 80 —— 0.5% Sn-
Sn 40 —&— Data Sn+
20 —>¢— Data Sn-
0
-20
Time Periods

Figure 9. Nonparametric Multivariate CUSUM Control Chart
Where k' is too Small. Time periods are measured on the X-

axis and the calculated values of the cumulative S and S
statistics are measured on the Y-axis. The upper and lower
control 1limits are calculated using the nonparametric
permutation technique. Small k* causes upper control limit

to diverge from zero.

Similar but opposite effects occur with the reference value k™.

If the value of kx is too large, the lower control limit will converge
on - and if k- is too small the lower control limit will converge on
zero. This thesis used multiple simulatiops to fine tune the reference
values until one was found that produced suitable control limits.

Once these control limits are determined, the values of S," and S,
calculated from the original data observations were plotted against
these upper and lower control limits. The results are shown in Figure
10. In this case, the process is constant with mean equal to three,
k*=3.75, k=1, and a Winsorizing constant (explained below) equal to 10.
The reference values k'=3.75 and k=1 produced upper and lower control
limits that stabilize near 30 and -1. The nonparametric permutation
technique correctly shows a process in control with no signaled shifts

in the process.
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Multivariate CUSUM, K+= 3.75, K-=1,
Winsorizing Constant = 10

40
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10 —%— Data Sn-

0
-10

Time Period

Figure 10. Nonparametric Multivariate CUSUM Control Chart

Without Shift. Multivariate Poisson generated data with mean

equal to 3. Time periods are measured on the X-axis and the

calculated values of the cumulative S, and S statistics are

measured on the Y-axis. The upper and lower control limits

are calculated using the nonparametric permutation

technique. Suitable values of k¥ and k  causes upper and

lower control limits to converge on a nonzero value. The

process is in control.

When a shift in the covariance structure is added to the process,
a shift is signaled in the chart as shown in Figure 11. The shift
signals at time period 39. Upon close analysis of the graph, the shift
appears to start at time period 38, which is the first “shifted point”
after the last time period that the “Data S,”” line leaves the X axis
before exceeding the control limit. Time period 38 was in fact when the

change to the covariance structure was added.
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Nonparametric Multivariate CUSUM, K+=3.75, K-= 1,
Winsorizing Constant = 10
45
Sn
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Figure 11. Nonparametric Multivariate CUSUM Control Chart
with Shift. Generated multivariate Poisson data with mean
equal to 3 and a shift in the covariance structure of the
data at time period 38. Graph signals a downward shift at
time period 39.

The change to the data set that caused this downward shift in the
graph is a change in the variability of the data towards the mean. In
other words, the covariance of the data is decreasing. Having all the
data observations after time period 37 equal the mean of 3 produced this

shift. Graphically this shift can be depicted as in figure 12.

Figure 12. Graphical Depiction of a Decrease in the

Covariance Structure. Plotted point £fall closer to the

center contour line of the bivariate distribution.

This reduction in the covariance structure will signal a departure
in multivariate CUSUM charts as shown in Figure 11, but will not cause a

shift in the wunivariate charts. This demonstrates a strength of

multivariate analysis.
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The downward shift in Figure 11 is difficult to see because of the

near zero values of the S, statistic and the lower control limit. In
Excel, the graphs can be expanded to simplify the identification of a
departure and the time period in which it started. To further simplify
the identification of a departure, the Excel program “Multivariate”
developed in this thesis identifies a shift as “hot” in text boxes
corresponding to the time period of the detection on the Excel worksheet
*datal”. An example of the Multivariate Excel worksheet “datal” and the
text boxes denoting a shift is shown in Figure 13.

An initial start up period is also required for the CUSUM charts,
but the start up period must be longer than in Shewhart charts.
Additional periods are reguired for the CUSUM charts in order to avoid
“near” singular covariance matrices in the calculation of the i
statistic. Such near nonsingular covariance matrices early in the
permutation process will produce extreme values of T2, Because the
CUSUM charts are cumulative by nature, these initial extreme values T?
will skew the remaining values of T? resulting in an incoherent graph.
By setting the required start period for the trivariate examples used
for the graphs above at 7, this problem was avoided.

Another point of concern based in the cumulative nature of the
CUSUM chart is the effect a single large T¢ statistic has on the CUSUM
chart. A single large value of the T? statistic is considered an
iéolated value of T?. This should cause a signal on the Shewhart charts
and not on the CUSUM charts. However, if the 7° statistic is
sufficiently large, it will cause the subsequent S§,* statistics to be
large, which may result in the CUSUM chart signaling a depérture. In
order to minimize the influence of any one T° statistic, especially in
the initial time periods where near singular matrices result in large i
statistics, a Winsorizing constant (W) is used. The Winsorizing

constant is the maximum allowable wvalue that the 7T° statistic can take
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when calculating the S, and S, statistics for the multivariate CUSUM
charts. When using a Winsorizing constant, the S, and S, statistics
are calculated as follows:

S* =max(0,S), + min(W,T>)—k*) (4)
S~ =min(0,S__, +min(W,T*)~k") . (5)

n—-1

This will prevent large values of T? from skewing the rest of the
S,' statistics in the CUSUM calculations and prevent the CUSUM charts
from signaling a persistent shift. Winsorizing the T? statistic for the
CUSUM charts will not effect the characteristics of the Shewhart charts.
Shewhart chart will continue to use large un-Winsorized T? statistics to
detect isolated departures in the data.

2. Database

The NATO Stabilization Force (SFOR) currently operating in Boznia-
Herzegovina collects incident data on the local populace. This data is
collected through numerous sources ranging from patrols of SFOR soldiers
who personally encounter the local ©populace to theater level
intelligence gathering sources. This data 1is divided into three
categories based on the type of incident that occurred and the level of
hostility contained in the act. The three categories are titled as
follows: Threats and Rhetoric, Contentious Activities, and Violent Acts
against SFOR. The data for each category is grouped into seven-day
periods from Monday to Sunday in order to ensure significant data wvalues
in each category over each time period, to avoid confounding with the
day of week, and to avoid sparseness.

The category *“Threats and Rhetoric” is defined as acts of
nonviolent demonstrations against SFOR, the international community or

the local Boznia-Herzegovina government, as well as organized political

statements against SFOR or the international community. Threats and
Rhetoric contains such acts as radio broadcasts, peaceful

demonstrations, and graffiti. Contentious Activities are defined as
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acts that are controversial or suspicious in nature to either the
international community or the Dayton Peace accord. Contentious
Activities include such acts as demonstrations that hinder SFOR
operations, observed vandalism of resettlement areas and material,
confiscation of weapons by SFOR at weapon storage sites (WSS) or
checkpoints, perceived acts of non-cooperation with established rules of
the Dayton Peace accord by the 1local factions, and suspected
intelligence gathering on SFOR units or bases by 1local nationals.
Violence towards SFOR is defined as acts of outright violence towards
SFOR personnel or facilities. Violence towards SFOR includes violent
acts ranging from local personnel throwing rocks at SFOR patrols and
vandalism against SFOR facilities to local personnel shooting at SFOR
soldiers and acts of terrorism against SFOR personnel or facilities.

Even though the incident log received for this thesis was
consolidated at the SFOR headquarters, units down to Battalion level
maintain their own forms of incident 1logs for analysis. Military
headquarters down to battalion level are staffed with personnel whose
responsibility it is to consolidate and analyze enemy information. The
incident logs at battalion level will normally not include incidents
from outside their area of responsibility unless a higher headguarters
has determined ;hat a specific incident has implications for the lower
units. The higher headquarters and lower units continuously exchange
information in order to ensure that every level has a complete log of
incidents and a complete understanding of the enemy situation. The SFOR
incident log used in this thesis is listed in Appendix A.

3. Software

The software developed in this thesis is called *“Multivariate
CUSUM” and is an extension of the univariate CUSUM software package
initially developed by Hawkins and Olwell and later modified by
Weitzman. Multivariate CUSUM is in Microsoft Excel spreadsheet format

and runs numerous macros in Visual Basic. The Microsoft Excel format
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ensures its accessibility and usability to Army units down to battalion
level, as well as most other organizatiomns.

Multivariate CUSUM gives the user access to both univariate CUSUM
procedures as well as the Multivariate CUSUM procedures developed in
this thesis. From the main data worksheet, the user enters three data
variates and then has the option of analyzing each variate individually

or collectively. The main data page, “datal” is shown in Figure 13.
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Figure 13. Multivariate Main Data Page, “datal”. Column A is the time
period entry £field. Columns B, C, and D are the incident data entry
fields. Columns E, F, G, and H are the out of control response fields
for univariate and multivariate analysis respectively. The “Run Get H”
button executes the ANYGETH.exe program. The “Update Univariate Graphs”
button and the “Update Multivariate Graphs” button execute the
respective programs and update the appropriate graphs. Change parameter
buttons, which display a Visual Basic windows for entering CUSUM
parameters (Figure 14), are shown for each variable along with the boxes
used to calculate standard parameters as explained later in this

section.
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For univariate analysis, the user calculates the upper and lower
CUSUM control chart limits for each individual variable using a Fortran
based software package called “ANYGETH.exe” that was developed by
Hawkins and Olwell. The user executes ANYGETH.exe by selecting the
Visual Basic command button labeled “Run GET H”. The user is prompted
to input the proposed distribution of the data, and the in-control and
out-of-control means. ANYGETH.exe returns the exact theoretical
reference value k and prompts the user to input a reference value to
use. Rounding the theoretical reference value k to the nearest .5 or
.25 speeds the calculation of ANYGETH and yields satisfactory results.
Next the user is prompted to input a Winsorizing constant, if necessary,
and then to specify if he wants zero start or fast initial response
(FIR) charts produced. Zero start charts are recommended and are used
exclusively in this thesis. FIR charts are not used in this.thesis, but
are use to determine if the adjustments made to a restarted chart
actually capture the nature of the shift that prompted the new chart.
Finally the user is prompted to input the ARL. ANYGETH.exe returns
multiple values of h and their corresponding ARL’Ss.

For example, executing ANYGETH.exe and using a Poisson
distribution with an in control mean of 3 and an out of control mean 5
returns an exact theoretical reference value of 3.915. Rounding this to
4 and using Zero start without a Winsorizing constant returns an upper
control limit or decision interval (DI) of 6, and an in control ARL of
71.3. The user selects the DI for the upper control limit and inputs it
into the excel worksheet. This process must be done separately for both
the upward shift and the downward shift of each variable being analyzed.

Note that the exact desired ARL will often not be returned when
using discrete data sets such as Poisson. The limited values of
discrete data sets result in limited possible values of h, and also a

limited set of possible ARL’s (Hawkins and Olwell, 1998, pl07-108).
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The user inputs the parameters into the Excel program using the
“Change Parameters” button from the main data page. This button opens
another Visual Basic window, as shown in Figure 14, that prompts the
user to input the persistent upper and lower control limits, the target

Lambda in-control, Lambda+, Lambda-, and the 1isolated <chart’s

probability limits.

 Setup Dialogl
e

Figure 14. “Change Parameter” Diafga Box. Persistent upper and lower
limits are values of the decision interval returned from ANYGETH.exe.
Target Lambda in control, Lambda+, and Lambda- are parameters for which
the CUSUM will be tuned to detect. The Isolated Probability Limits is
the percentage used to calculate the initial Shewhart control limits.
The persistent upper and lower control limits are calculated using
ANYGETH.exe. The target Lambda in-control, Lambda+, and Lambda- are
determined by the commander or manager based off of the size of shift
that he is concerned about. They may be calculated using the target
mean of the variable times a constant or using a percentage of the
target mean. In this thesis, the Lambda+ and Lambda- are calculated to
detect a 50% shift in the target Lambda in-control. These values are

automatically calculated on the main data page in the in cells

designated for each data éategory.
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The probability limits are used to calculate the initial upper and
lower control limits for the isolated control charts and should be based
off of the desired test ARL and equation 1 as explained in Chapter IV,
section A2, above. Subsequent values for the upper and lower control
limit are calculated using the CRITBINOM function explained earlier.

Once these parameters are entered, the user selects the “OK”
button and returns to the main data page. The user executes the
calculations and graphing by selecting the “Update Graphs” graphs. He
is then able to view the graphs for each variable by selecting the
appropriate worksheet sheet. Out of control signals will be shown both
as “hot” values on the main data page and as points plotted outside the
control limits on the graph pages.

It should be noted that the parameters only need to be changed
when the charts have signaled a shift in data. The charts must then be
cleared and the user will need to “retune” the charts to the new process
mean.

For Multivariate analysis of the data, the user is able to input
values for k¥, k~, the Winsorizing constant, the confidence interval,
the number of permutations, and the starting point into the main data
page. For the number of permutations and the starting point, the wvalues
of 4800 and 7 respectively are suggested.

' The user selects the “Update Multivariate Graphs” button, which
executes the macro that conducts the nonparametric permutation technigque
described above in Chapter IV, Section C1. Conducting the nonparametric
permutation technique for 1000 permutations may take considerable time
if the data set is large. For example, on a Pentium III computer with a
300 mhz processor, 50 periods of data takes approximately 25 minutes to
complete, and 100 periods of data takes nearly 90 minutes to complete.
For this reason, the user is advised to make shorter runs when adjusting
his values of k' and k. When these parameters are adjusted, he can run

the full 4800 permutations to ensure continuity of the control limits.
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Multivariate CUSUM is designed for ease of use byvpersonnel not
highly trained in SPC and CUSUM techniques. It utilizes Microsoft Excel
to ensure accessibility to a wide audience and Visual Basic Macro
puttons to facilitate input of the required parameters. The general
instructions for analyzing univariate and multivariate data, as
described above, are displayed on the main data page. A copy of these

instructions is located in Appendix B of this thesis.




V. STATISTICAL ANALYSIS

A. PARAMETER DETEMINATION

1. Individual Univariate Parameters

This thesis analyzes SFOR incident data from May 1999 to October
1999. In this section, we discuss the rationale and methods used to
determine the numerous parameters required for individual univariate
self-starting CUSUM control charts.

Individual univariate analysis consists of analyzing each data
category individually using the univariate methods discussed previously.
The control charts for a specific data category will only be restarted
when a persistent shift is detected in that specific data category. The
data categories are not combined with the other data categories, nor is
the analysis of one data category dependent on the analysis conducted on
the other data categories. This is not to be confused with simultaneous
univariate analysis, which will be discussed in the next section.

In individual univariate analysis, the target in control mean
(A,), or “Target Lambda in Control”, is calculated by averaging the
first four observations of the data set. For executing control charts
with less than four observations, such as in the initial execution of
the charts or when the charts are restarted as a result of a persistent
shift, the target in control mean is calculated by averaging the
available number of time periods, one through three. This follows the
principal strength of self-starting CUSUM control charts, which is that
they can be run with small initial data sets. Averaging larger amounts
of data, such as seven or ten, increases the length of time required to
determine the process mean and reduces the small data set strength of
self-starting CUSUM control charts. The number of observations averaged
is not related to the start up period of the multivariate control

charts.
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In the event that a CUSUM chart signals a shift and needs to be
restarted, a new target in control mean must be calculated. The process
is *“retuned” by first looking at the graph and determining when the
shift started, not when it was signaled. Shifts are said to start in
the first time period following the time period where the trend line
last touched the X-axis on the graph. The start point is also referred
to as the first “shifted” data point because it is the first “shifted”
data point following the last zero value of the trend line. The new in
control mean is calculated in the same manner described above starting
with the first “shifted” data point.

The upper and lower tuning parameters for the out of control
means, A, and A;, or from the spreadsheet “Lambda+” and “Lambda-", are
calculated using multiples of the in control mean. For this thesis, the
out of control means are set to detect shifts of 50% of the actual mean.
That is to say that Lambda+ is equal to three halves times the target

sample mean and Lambda- is equal to one half times the target sample
mean. 1In equation form: A' =3/2*/ and A =1/2*%4,. These values are

used in order to detect large, “practically significant” shifts in the
mean. Practically significant shifts refer to shifts in the mean that
are deemed significant by the process manager. For example, managers
that supervise the filling of oil tankers at port facilities use meters
on their pumps to record the amount of oil pumped into a tanker ship.
The tankers are subsequently charged for the amount of oil recorded by
the meters. If the pumps or meters malfunction resulting in an average
amount of 50 extra gallons of o0il being pumped but not counted, the
managers will probably not be concerned. The loss in revenue of these
50 gallons is insignificant to the total bill of loading a 5 million-
gallon tanker. This is a “practically insignificant” shift and since

charts will not be tuned to detect this shift, it will not be made

“statistically significant”.




If however, the limited capacity of the ship forces the extra 50
gallons of 0il to be discarded into the ocean, and the pumping facility
is fined $100,000 per spill, the over pumping will be a “practically
significant” event. CUSUM and Shewhart charts will be tuned to detect
this shift, making it “statistically significant.”

The CUSUM chart upper and lower control limits (kh* and h7) are
calculated using the Fortran software package “ANYGETH.exe”. This
software package requires the ARL and the univariate reference values
(k* and X) to determine the upper and lower control limits.

This thesis chose a combined ARL of 100 for a number of reasons.
First, the data is grouped into one-week periods running from Monday
through Sunday. An ARL of 100 establishes the timeline of expecting a
false alarm roughly once ever two years, which seemed reasonable.
Secondly, in the area of military force protection, the cost of a false
alarm is minimal compared to the cost of missing an upward shift, which
warrants a low ARL. The cost of a false alarm includes increasing
security measures and inconveniencing the soldiers when in fact the
increase is unwarranted. The cost of missing a shift in the incident
data may result in the loss of lives resulting from an incident such as
the car bombing of the Air Force barracks, Khobar towers, in Saudi
Arabia. Although the cost differences in this example are extreme, it
is still favorable to avoid excessive false alarms. Besides
inconveniencing the soldiers with increased force protection duties,
excessive false alarms cause the soldiers to disregard the seriousness
of their force protection duties. This sense of complacency degrades
the effectiveness of the force protection and puts the soldiers at risk.
An over all ARL of 100 is a compromise.

The individual univariate analysis uses four different tests per
data category, which as stated in Chapter IV, requires special
consideration in order to achieve the desired over all ARL. These four

tests are the upper and lower Shewhart control limits, and the upper and
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lower CUSUM control limits. From Equation 2, a test ARL of 400 is used
in each of the four tests in order to obtain an overall process or

combined ARL of 100.

As stated earlier, probability limits are used to determine the
values of the upper and lower Shewhart control limits for the first data
point. Control limits for subsequent data points are calculated by the’
CRITBINOM function. From Equation 1, probability limits of .9975, or
99.75%, result in the desired test ARL of 400.

The initial univariate reference values, k' and k7, and the upper
and lower control limits for the SFOR data were determined using the
previously mentioned software package “ANYGETH. exe” . The results of

this work are consolidated in table 1 below.

In Out of
Data Category k+/k- h+/h- Control Control
(DI) ARL ARL
1 8.6 (+) 10.8 (+) 417 up 6.3 up
Threats and Rhetoric 5(-) -7 (-) 469 down 5down
2 114 (+) 10.8 (+) 404 up Sup
Contentious Activities 6.7 (-) -6.6 (-) 411 down 3.9 down
3 3.1 (+) 9.3 (+) 418 up 13 up
Violence Towards SFOR 1.8 (-) -6.2 (-) 430 down  11.9 down

Table 1. Results of ANYGETH.exe on SFOR data. Winsorizing

constant was not used. Up corresponds to upward shifts, down

corresponds to downward shifts.

2. Multivariate Parameters

As stated earlier, multivariate analysis consists of two parts:
simultaneous univariate analysis and nonparametric multivariate
analysis. The simultaneous wunivariate analysis parameters are
calculated in the same manner as the individual wunivariate analysis
parameters. One difference is that multivariate analysis has 16 tests,
twelve in the simultaneous univariate analysis and four in the
nonparametric multivariate analysis, which affect the combined ARL.
Using Equation 2, a desired test ARL of 1600 will achieve the combined

ARL: of 100. This test ARL of 1600 is used for the 12 simultaneous

univariate tests. The test ARL of 1600 also affects the probability
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limits used for the Shewhart control limits of the chart’'s first data
point. Using Equation 1, a probability 1limit of .999375, rounded to
99.94%, achieves an in control ARL of 1667, which is sufficiently close
to the desired in control ARL of 1600.

The nonparametric multivariate analysis developed in this thesis
requires only four principal parameters: the multivariate reference
values k* and k~, the confidence interval, and a Winsorizing constant.
The reference values k* and k-~ were determined by running multiple
simulations on the data using different values and determining which
values resulted in the flattest control limits. The initial wvalues of
k¥ and k™ were set to 4 and 2, but after several simulations on the SFOR
data set, the wvalues were changed to 3.75 and 1 for reasons described
earlier.

The same methodology was used to determine the wvalue of the
Winsorizing constant. After running several simulations with different
Winsorizing constants, this thesis chose a Winsorizing constant of 10
because it limited the effect extreme values of T?° had on the values of
S,* and S, .

As with the probability 1limits in the simultaneous wunivariate
analysis, the confidence interval chosen for the control limits in the
nonparametric permutation technique directly affects the in control ARL.
Again from Equation 1, a confidence interval of .999375, rounded to
99.94%, achieves an in control ARL of 1667, which is sufficiently close
to the desired in control ARL of 1600. This nonparametric multivariate
test ARL, whgn combined with the simultaneous univariate test ARL of
1600 using Equation 2, results in an over all ARL of 101.015, which is
acceptably close to the target combined ARL of 100. The out of control
ARL will not be discussed in the multivariate analysis. This is due to
the fact that the out of control ARL depends on the type of shift that

occurs. In multivariate analysis, numerous types of shifts can occur.
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Attempting to address all possible shifts, or even focus on a few, is
beyond the scope of this thesis. As a result, we also do not discuss
power considerations.

As stated earlier, the user may choose to change the number of
permutations and the start point of the nonparametric permutation
technigque. Manipulating the number of permutations and the start point
are not self-explanatory and require further explanation.

Manipulating the number of permutations affects the time of the
program operation, the smoothness of ‘the control limits, and the
thoroughness of the sampling. It should, however, be based on the
confidence interval used to get the proper multivariate test ARL.
Obviously, the fewer the permutations, the quicker the program executes
the technigue. But this also increases the variance in the estimates of
the control limits and should leave the user less confident that the
control limits reflect the correct percentile of possible values from
the sample. Also, if high ARL’s are used, a high number of permutations
should be used to prevent the control limits from taking on the extreme
points of the permutated values. For example, using a confidence
interval of 99.94% on 100 permutations of the data will result in the
highest and lowest values of the permutated statistics. On the other
hand, using 50,000 permutations will result in the 49,970 and 30%®
sorted wvalues of the permutated statistic for the upper and lower
control limits. This additional distance from the highest and lowest
values provides additional confidence that the control limits are not
affected by extreme values. Of course time and computing power will
effect the final decision as well. This thesis chose to conduct 4,800
permutations onithe data making the 4797 and 3™ sorted values of the
permutated statistic the upper and lower control limits.

Manipulating the start point for the calculations will effect the
initial values of the T° statistic. If the start point is equal to the

number of wvariables, near singular covariance matrices are common.
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These near singular covariance matrices will cause the T° statistic to

take an extreme wvalue, which in turn will skew the Shewhart style
graphs. Using a start point equal to three or four time periods past
the number of variables produced large, but not extreme values of T?.
Through simulation, this thesis determined that a start point of 7 was
acceptable, in that it reduced the start up time for the graphs while
producing usable values of T°.
B. APPLICATION TO STABILIZATION FORCE (SFOR) DATA

1. Individual Univariate Analysis

This thesis will conduct individual univariate analysis on all
three data categories, but will only discuss the results of the first
category in detail. The results of the analysis on the second and third
data categories will be consolidated at the end of this section.
Multivariate analysis of the data, consisting of simultaneous univariate
analysis and nonparametric multivariate analysis, will be conducted and
discussed in the following section.

The individual univariate control charts for data category 1,
Threats and Rhetoric, are shown below in Figure 15. The parameters used

in the charts are those listed in Table 1.
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Figure 15. Individual Univariate Control Charts for SFOR

Data, Threats and Rhetoric, Periods 1-9. Isolated upward
departure at time period 5 and a persistent downward shift
at time period 9. The persistent decreasing shift appears to
begin at time period 6. .

These charts signaled an isolated upward departure at time period

Although close, the

5 and a persistent downward shift at time period 9.
increasing trend line on the persistent chart does not exceed the upper

control limit at time period 5 and therefore, does not signal a shift.

This can be verified in Excel by selecting the increasing trend line

with the pointer arrow. When the pointer arrow is placed on the

selected trend line near the point corresponding to time period 5, Excel
displays the value of the increasing trend line at time period 5 as

10.735. This is less than the upper control 1limit of 10.8 and a

persistent shift is not signaled.

The charts need to be retuned for the persistent shift, not for

the isolated departure. The charts are restarted at the point where the
shift started, not when it signaled. The start of a shift is identified

by the first time period following the time period where the trend line
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last touched the X axis on the graph. The start point is also referred
to as the first “shifted” data point because it 1is the first “shifted”
data point following the last zero value of the trend line. From Figure
15, the persistent downward shift detected at time period 9 was last
plotted on the X-axis at time period 5. The next point after that, or
the first *shifted point”, is at time period 6. The new charts are
therefore retuned and restarted at time period 6.

Figure 16 shows the updated charts, started at time period 6, that
are tuned to detect shifts from the new process mean. The new target in
control mean is 3.5 which is a considerable decrease in the target in
control mean from previous in control mean. The new out of control mean
for an upward shift is 5.3, and the new out of control mean for a
downward shift is 1.8. The upper and lower control limits.are 10 and -7
respectively. The ARL is 413 for the upward shift and 411 for the

downward shift.
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Figure 16. Individual Univariate Control Charts for SFOR

Data, Threats and Rhetoric, Periods 6-15. Persistent

downward shift signaled at time period 15. Decreasing trend

appears to begin at time period 7.

The charts in Figure 16 signal persistent downward shift at time
period 15, which appears to start at time period 7. The fact that the
shift appears to start immediately following the start period of the
newly tuned charts suggests that the shift was not the result of a step
change, but is instead the result of a linear drift in the data. When
retuning and restarting a chart due to a shift caused by linear drift,
the chart is restarted at the first time period after the shift was
detected. In this case, the new chart will start at time period 16.
| Restarting the CUSUM charts at time period 16, however,
illustrates the issue of starting a CUSUM chart with an initial wvalue
equal to zero. CUSUM charts require an initial value not equal to zero.
If they are started with an initial value equal to zero, the charts will
signal a persistent shift in the time period that contains the first

non-zero value. This issue presented itself throughout the analysis of

SFOR incident data due to the number of time periods that contain values
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equal zero. To avoid this issue, this thesis will restart the charts in
the first non-zero time period after the apparent start of the shift.
In this case, time periods 16 and 17 contain zero values, so the charts
will be started in time period 18.

Figure 17 shows the updated charts that are tuned to detect shifts
from the new process mean. The new target in control mean is 0.25,
which 1is another decrease in the target in control mean from the
previous in control mean. The new out of control mean for an upward
shift is 0.4, and the new out of control mean for a downward shift of
0.1. The upper and lower control limits are 6.1 and -3.6 respectively.
The in control ARL for the upward shift is 409 and the in control ARL

for the downward shift is 412.

Individual Univariate Isolated Departures
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Figure 17. Individual Univariate Control Charts for SFOR
Data, Threats and Rhetoric, Periods 18-31. Isolated upward
departure at time period 29. Process is in control.

The new charts in Figure 17 detected an isolated upward departure

at time period 29. There were no persistent shifts detected, therefore
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the system is in control through time period 31, which is the end of the

observed data.

Table 2 below shows the consolidated results of the univariate

analysis for the 3 data categories.

] INDIVIDUAL UNIVARIATE ANALYSIS 1
Data Time Target Out of In Out of Isolated  Persistent Type of
Category Periods InControl  Control k+/k- h+/h- Control Control  Departures Shifts Persistent
Mean Mean (D) ARL ARL Shift
1 1-9 7 10.5 up 8.6 (+) 10.8 (+) 417 up 6.3 up upats down at9 step
Threats - 3.5 down 5 (-) -7 (-} 469 down 5 down
& 6-15 3.5 53up 4.3 (+) 10 (+) 413 up 10.3up n/a down at 15 linear drift
Rhetoric 1.8 down 2.6 (-) -7 () 411 down 8.7 down
18-31 0.25 4up 3(+) 6.1 (+) 409 up 51.1up up at 29 na na
.1 down .16 (-) -3.6() 412down 44.5 down
2 1-16 9.25 13.9 up 114 (+) 108 (+) 404 up Sup upat14 downat 16 step
Contentious 4.6 down 6.7 (-) -66() 411down 3.9 down
Activities 15-31 3.25 4.9 up 4(+) 11(+) 569 up 11.9up n/a na n/a
1.6 down 2.3 (-) -6 () 403 down 8.7 down
3 1-18 25 38up 3.1(+) 9.3 (+) 410 up 13up up at4 down at 18 step
Violence 1.3 down 1.8 () 6.2 (-) 414 down _ 11.9 down
Toward 11-22 1 1.5up 1.2 (+) 8.8 (+) 418 up 26.5 up n/a na n/a
.5 down 7 () -5.2 (-) 430 up 22.4 down

Table 2. Consolidated Individual Univariate Analysis on SFOR Incident
Data. Up corresponds to upward shifts and down corresponds to downward
shifts.

From Table 2, the number of shifts in the three categories
suggests high volatility in the SFOR incident data and of the
peacekeeping environment itself. Using test ARL’s of 400 in the four
combined tests for each data category should have resulted in one false
alarm every 100 time periods. 1Instead, each data category had at least
one shift in only 31 time periods. This is three times as many shifts
as would be_expected and clearly shows the volatility of the situation.

2. Multivariate Analysis

The initial parameters for the simultaneous univariate analysis
and the nonparametric multivariate analysis are listed below in Table 3.
The simultaneous univariate parameters are entered and the corresponding
charts are updated. Following this, the multivariate parameters are
entered and the nonparametric permutation technique is conducted. All
charts are restarted simultaneously if a persistent shift is detected in
any of the CUSUM control charts.

As described earlier, the multivariate parameters are the

reference values (k* and k7)), the Winsorizing constant, and the




confidence interval. These four parameters are set at 3.75, 1, 10, and
99.94% respectively and will remain so throughout the multivariate
analysis unless a change is required. The additional parameters, the
number of permutations and the start point, are set at 4800 and 7
respectively. These parameters will also remain constant throughout the
multivariate analysis unless a change is required.

Executing the simultaneous wunivariate analysis resulted in two.
isolated departures and one persistent shift as shown below in Table 3.
The first persistent shift in multivariate analysis occurs as a
univariate persistent downward shift in category 1, Threats and
Rhetoric, in period 9 and it appears to start at time period 6. There
was also an isolated upward departure at time period 5. There were no

shifts detected in the nonparametric multivariate control charts.

Simultaneous Univariate Analysis
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Figure 18. Simultaneous Univariate Analysis, Persistent
Shift in Threats and Rhetoric, Time Periods 1-9. Isolated
upward departure at time period 5. Persistent downward shift
at time period 9. Persistent downward shift appears to start
at time period 6.

The parameters and results of the analysis are consolidated in

Table 3 below.
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[SIMLUTANEOUS UNIVARIATE PARAMETERS

Data Time Target Qut of In Out of Isolated Persistent  Type of
Category Periods In Control Control k+/k- h+/h- Control Control Departures Shifts Persistent
Mean Mean (D1) ARL ARL Shift
1 1-9 7 10.5up 8.6 (+) 142 (+) 1646 up 8.1up up ats down at 9 step
Threats & 3.5down 5() -9(-) 1985 down 6.3 down
Rhetoric
2 1-9 9.25 13.9 up 11.4 (+) 14.2 (+) 1643 up 6.4 up n/a n/a na
Contentious 4.6 down 6.7 (+) -8.9 () 1860 4.9 down
Activities
3 1-9 25 3.8up 3(+) 15(+) 1980 up 18.4 up upat4 wa na
Violence 1.3 down 1.8() 82 () 1693 down 15.8 down
Toward
l NONPARAMETRIC MULTIVARIATE PARAMETERS I
k+ k- Confidence Winsorizing Iterations Start Isolated Persistent  Type of
Interval Constant Point Departures Shifts Persistent
Shift
3.75 1 99.94% 10 4800 7 n/a na n/a

Table 3. Consolidated Parameters, Multivariate Analysis, Time Periods 1-
9. Up corresponds to upward shifts and down corresponds to downward
shifts. Persistent downward shift detected in the simultaneous
univariate control charts in data category 1 at time period 9. No shifts
detected in the nonparametric multivariate control charts.

The persistent shifts require that all the charts be restarted.
All charts, both the simultaneous wunivariate <charts and the
nonparametric multivariate charts, will be restarted using the first

detected shift. All categories will be restarted at this time even
though there has not been a signaled shift in a multivariate chart.
Since the first persistent shift appears to start at time period 6, the
new charts will be restarted at time period 6.

The consolidated parameters and results of the analysis for time

periods 6-21 are shown below in Table 4.
{ SIMULTANEOQUS UNIVARIATE PARAMETERS
Data Time Target Out of In Out of Isolated  Persistent Type of
Category Periods In Control  Control k+/k- h+/h- Control Control  Departures  Shifts Persistent
Mean Mean (DI) EL ARL Shift
1 6-21 3.5 53up 4 (+) 19 (+) 1755 up 15up na n/a n/a
Threats & 1.8 down 1.8 () -8.2 () 1693 down 15.8 down
Rhetoric _
2 1 621 3.75 5.6 up 4.6 (+) 136 (+) 1629 up 13.7 up n/a down at 21 step
Contentious 1.9 down 27 (%) -8.3 (-} 1606 down 10.6 down
Activities
3 6-21 225 3.4 up 28 (+) 124 (+) 1733 up 19.8 up wa n/a n/a
Violence 1.1 down 1.6 (-) -8() 1852 down 15.6 down
Toward
| NONPARAMETRIC MULTIVARIATE PARAMETERS l
k+ k- Confidence Wsorizing Iterations Start Isolated Persistent  Type of
Interval Constant Point Departures Shifts Persistent
Shift
3.75 1 99.94% 10 4800 7 n/a n/a n/a

Table 4. Consolidated Parameters, Multivariate Analysis, Time Periods 6-

21.
shifts.

Persistent
univariate control charts in data category 2 at time period 21.

downward

shift

detected

in

the

Up corresponds to upward shifts and down corresponds to downward

simultaneous

shifts detected in the nonparametric multivariate control charts.
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As can be seen in Table 4, the only shift occurred in category 2,
Contentious Activities. It is a persistent downward shift detected in
the simultaneous univariate CUSUM control chart. ©No shifts are detected
with the nonparametric multivariate control charts. The shift is the
result of a step change and appears to start at time period 14, so the
new charts will be restarted at time period 14.

Restarting the CUSUM charts time period 14, again illustrates the
issue of starting a CUSUM chart with an initial value equal to zero. As
stated earlier, CUSUM charts require an initial value not equal to zero.
In the event of a zero value in an initial chart time period, this
thesis stated earlier that it would start the charts at the next time
period with a non-zero value.

Time periods 14-21 contain zeros in one category or the other.
Restarting the charts at time period 22 would result in the loss of
eight time periods, or 2 months worth of data. To prevent the loss of
such a significant amount of data, the original rule will be broken and
the charts will be started at time period 13, which is the first time
period prior to the start of the shift with all non-zero wvalues. The

parameters used and the results of the analysis are consolidated in

Table 5.
f UNIVARIATE PARAMETERS |
Data Time Target Out of in Out of Isolated Persistent  Type of
Category Periods In Control Control k+/k- h+/h- Control Control Departures Shifts Persistent
Mean Mean (D) ARL ARL Shift
1 22-31 0.25 A4up 3(+) 9.3 (+) 1607 up 82.8 up up at 29 n/a n/a
Threats & .1 down 2() <7.8(-) 1759 down 73.5 down
Rhetoric .
2 22-31 2.05 3.4up 2.8 (+) 12.4 (+) 1733 up 19.9up Wa wa Wa
Contentious 1.1 down 1.6(-) -8() 1852 down 15.6 down
Activities _
3 22-31 0.75 1.1up 9 (+) 11.7 (+) 1629 up 52.3up na na n/a
Violence 4 down 8{) -9.6 (-) 1682 down 44.8 down
Toward
l MULTIVARIATE PARAMETERS I
k+ k- Confidence Winscrizing Iterations Start Isolated Persistent Type of
Interval Constant Point Departures Shifts Persistent
— Shift
3.75 1 99.94% 10 4800 7 n/a n/a n/a

Table 5. Consolidated Parameters, Multivariate Analysis, Time Periods
13-31. Up corresponds to upward shifts and down corresponds to downward
shifts.
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There were two isolated departures detected during time periods
13-31. One shift was an isolated upward departure at time period 29 in
category 1, Threats and Rhetoric. The other isolated departure was an
isolated downward deparﬁure at time period 14 in category 2, Contentious
Activities. The charts do not need to be restarted since there wére no
persistent shifts detected. The process is in control through the end
of the data set.

The shifts that occurred during the multivariate analysis were all
from the simultaneous univariate charts. Figures 19, 20, and 21
consolidate all these departures and shifts on one graph per data
category. Large red data points identify the detected shifts and

departures.
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Figure 19. Simultaneous Univariate Analysis, Consolidated Shifts in
category 1. 1°° chart periods are from time period 1 to time period 9.
2™ chart periods are from time period 6 to time period 21. 3™ chart
periods are from time period 13 to time period 31. Isclated departures
were detected in time periods 5 and 29. One persistent shift occurred in
time period 9. Large red data point identifies shifts and departures.
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Figure 20. Simultaneous Univariate Analysis, Consolidated shifts in
Category 2. 1%° chart periods are from time period 1 to time period 9.
2" chart periods are from time period 6 to time period 21. 3™ chart
periods are from time period 13 to time period 31. An isolated departure
occurred in time period 14. A persistent shift occurred in time period

21. Large red data point identifies shifts and departures.
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Figure 21. Simultaneous Univariate Analysis, Consolidated Shifts in
Category 3. 1°° chart periods are from time period 1 to time period 9.
2" chart periods are from time period 6 to time period 21. 3™ chart
periods are from time period 13 to time period 31. Isclated departure
occurred in time period 4. No persistent shifts were detected. Large red
data point identifies departure.

3. Analysis of SFOR Incident Data in Reverse Order

Applying the technique developed to the actual SFOR data, as done
above, shows volatile data with primarily decreasing trends. To a
commander responsible for the lives of his soldiers, decreasing trends
which warrant a decrease in the force protection level do not stimulate
the same sense of anxiety as increasing trends would. Obviously,

increasing trends depict a situation that is getting worse, and for the
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commander, a situation where his soldiers are in significantly more
danger.

To show the results of this technique on increasing trends, this
thesis reversed the order of the SFOR incident data, then applied these
techniques to it. The numbers of incidents should now be generally
increasing instead of decreasing, which will signal more increasihg
trends. Again, we will analyze the data category 1, Threats and
Rhetoric, in detail and summarize the individual univariate analysis of
data categories 2 and 3. Following the individual univariate analysis,
we will analyze the data using the multivariate technique.

Starting with the individual univariate analysis of category 1,
the reversed data has a target in control mean of 1.5, an out of control
mean for an upward shift of 2.3, and an out of control mean for a
downward shift of .8. The upper control limit equals 8 and the lower
control limit equals -6. The in control ARL for an upward shift is 404
and the in control ARL for a downward shift is 403. The results are

shown below in Figure 22.
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Figure 22. Individual Univariate Control Charts for Reversed

SFOR Data, Threats and Rhetoric, Periods 31-10. Isolated

upward departures at time periods 29 and 11. Persistent

upward shift at time period 10. Persistent shift appears to

begin at time period 14.

As shown, two isolated upward departures are detected at time periods 29
and 11. A persistent upward shift is detected at time period 10, which
appears to start at time period 14. This is a step change. The charts
need to be retuned and restarted at time period 14.

The new charts for time periods 14 through 5 are shown below in
Figure 23. The new target in control mean is 1.75, the out of control
mean for an upward shift is 2.6, and the out of control mean for a
downward shift is .9. The upper control limit is egqual to 9.7 aﬁd the

lower control limit is equal to -6.4. The in control ARL for an upward

shift is 404 and the in control ARL for a downward shift is 403.
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Figure 23. Individual Univariate Control Charts for Reversed

SFOR Data, Threats and Rhetoric, Periods 14-5. Isolated

upward departure and persistent upward shift at time period

5. The persistent upward shift appears to begin at time

period 12. .
Time period 14 through 5 show an isolated upward departure and a
persistent upward shift at time period 5. The persistent shift appears
to start at time period 12. Once again, this is a step change and the
new charts will be restarted at time period 12.

The new charts restarted at time period 12 have a target in
control mean of 2.25, an out of control mean for an upward shift of 3.4,
and an out of control mean for a downward shift of 1.1. The upper and

lower control limits are 9.2 and -6 respectively. The in control ARL’s

are 433 for an upward shift and 419 for a downward shift. The results

are shown below in Figure 24.
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Figure 24. Individual Univariate Control Charts for Reversed

SFOR Data, Threats and Rhetoric, Periods 12-5. Isolated

upward departure and persistent upward shift at time period

5. The persistent upward shift appears to begin at time

period 7.
The charts signal once again signal an isolated departure and a
persistent shift at time period 5. The persistent shift appears to
start at time period 7, depicting a step change. The charts will be
restarted at time period 7.

Figure 25 shows the restarted charts for time periods 7 through 1.
The new target in control mean is 9.5, the out of control mean for an
upward shift is 14.3, and the out of control mean for a downward shift
is 4.8. The upper and lower control limits are 10.7 and -6.8

respectively. 'The in control ARL’s are 406 for an upward shift and 414

for a downward shift.
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Figure 25. Individual Univariate Control Charts for Reversed
SFOR Data, Threats and Rhetoric, Periods 7-1. Isolated
upward shift signaled at time period 5.
The charts detect an isolated upward departure at time period 5. There
were no persistent shifts detected so the process is in control.

The consolidated results from the univariate analysis of the

SFOR data in reverse order is shown below in Table 6.
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I INDIVIDUAL UNIVARIATE ANALYSIS 1

Data Time Target Out of In Out of Isolated Persistent  Type of
Category Periods InControl  Control k+/k- h+/h- Control Control Departures Shifts Persistent
Mean Mean (D) ARL ARL Shift
1 31-10 15 2.3up 19(4) 8 (+) 404 up 18.1 up up atag, 11 up at 10 step
Threats .8 down 1.1 (-) -6 (-) 403 down  18.2 down
& 14-5 175 2.6 up 2.1 (+) 9.7 (+) 412 up 18 up upats up at5 step
Rhetoric .9 down 1.3 () -6.4 (-} 407 down _ 15.2 down
12-5 225 34up 2.8 (+) 9.2 (+) 433 up 146 up up ats up ats step
1.1 down 1.6 (-) -6 (+) 419 down 11.6 down
7-1 95 143 up 11.7(+) 107 (+) 406 up 49 up upats n/a n/a
4.8 down 6.9 (+) -6.8 (-) 414 down 3.7 down
2 31-18 3 4.5 up 3.7 (+) 9.6 (+) 400 up 118 up n/a down at 18 step
Contentious 1.5 down 2.2 (-} -6.6(-) 407 down 9.6 down
Activities 23-11 1.75 2.6 up 2.1 (+) 9.7 (+) 412 up 186up upat17,13,11 upat11 step
.9 down 1.3 () -6.4 (-) 407 down__ 15.2 down
171 3.25 4,9 up 4 (+) 11 (+) 569 up 119 up up at4 na n/a
1.6 down 2.7 () -6 (-) 403 down 8.7 down
3 31-10 0.5 8up 6 (+) 7.4 (+) 400 up 33.1up upat22,13,10 wupati10 step
Violence .3 down A4() -6.2(-) 417 down _ 49.7 down
Toward 22-6 1.75 2.6 up 2.1(+) 9.7 (+) 412 up 18.6 up up at10,6 up at6 step
.9 down 1.3 (1) 6.4 () 407 down _ 15.2 down
1341 225 3.4up 28 (+) 9.2 (+) 433 up 14.6 up up at4 n/a n/a
1.1 down 1.6 (-) -6 () 419 down  11.6 down

Table 6. Consolidated Individual Univariate Analysis on Reversed SFOR
Incident Data. Up corresponds to upward shifts and down corresponds to
downward shifts.

Conducting the multivariate analysis of the reversed SFOR data is

consolidated below in Table 7. As with the multivariate analysis on the

SFOR data in its original order, there were no multivariate shifts

detected.
[ INDIVIDUAL UNIVARIATE PARAMETERS I
Data Time Target Out of In Out of Isolated Persistent  Type of
Category Periods InControl  Control k+/k- h+/h- Contro! Control Departures Shifts  Persistent
Mean Mean (D1) ARL ARL Shift
1 31-8 15 23 up 1.9 (+) 11 (+) 1644 up 254 up up at29, 11 upatg step
.8 down 1.1() -8.1 () 1644 down 25.1 down
2 31-8 3 4.5up 375(+) 125 (+) 1657 up 16.2 up up at 13,11 n/a na
1.5 down 22 () -8.8 () 1761 down 12.7 down
3 31-8 0.5 .8up 6(+) 1 (+) 1677 up 51.1up up at22,13,10 n/a wa
.3 down 4() 9 () 1743 down 77.4 down
1 135 2 3up 25 (+) 125 (+) 1973 up 23.1up up at5 upats step
1 down 14 (-) -7.6(-) 1826 down 17.7 down
2 135 7 105 up 8.6 (+) 14.2 (+) 1646 up 8.1 up na na na
3.5 down 5() -9 () 1985 down 6.3 down
3 13-5 225 3.4up 28(+) 12.4 (+) 1733 up 199 up n/a na n/a
1.1 down 16() -8 () 1852 down 15.6 down
1 7-1 9.5 143 up 11.75 (+) 14 (+) 1640 up 6.2up upats n/a wa
4.8 down 6.9 (-) -8.8 () 1807 down 4.9 down
2 o™ 7 105 up 8.6 (+) 14.2(+) 1646 up 8.1up up at4 n/a na
3.5 down 5() -9(-) 1985 down 6.3 down
3 71 4.25 6.4 up 525 (+) 135 (+) 1692 up 12up n/a n/a na
2.1 down 3() -9 (-) 1747 down 9.9 down
| NONPARAMETRIC MULTIVARIATE PARAMETERS I
Periods k+ k- Confidence Winsorizing [lterations Start Isolated Persistent Type of
Interval Constant Point Departures Shifts Persistent
Shift
31-8 3.75 1 99.94% 10 4800 7 na n/a n/a
13-5 3.75 1 99.94% 10 4800 7 na n/a na
7-1 3.75 1 99.94% 10 4800 7 na n/a n/a

Table 7. Consolidated Multivariate Analysis on Reversed SFOR Incident
Data. Up corresponds to upward shifts and down corresponds to downward
shifts.

The shifts that occurred during the multivariate analysis of the

SFOR data in reverse order are shown below in Figures 26, 27, and 28.
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These figures consolidate all the shifts that occurred during the

multivariate analysis on one graph per data category.
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Figure 26. Multivariate Analysis for SFOR Data in Reverse Order,
Consolidated shifts in Category 1. 1% chart periods are from time
period 31 to time period 8. 2™ chart periods are from time period 13 to
time period 5. 3™ chart periods are from time period 7 to time period
1. Isolated shifts occurred in time periods 29, 11 and 5. Persistent
shifts occurred in time periods 8 and 5. Large red data points identify
departures and shifts.
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Figure 27.

order, Consolidated Shifts in category 2. 1%
13 to time period 5. 3™
period 1. Isolated shifts
persistent shifts were

departures and shifts.

occurred in time periods 13,
detected. Large
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Figure 28. Simultaneous Univariate Analysis for SFOR Data in Reverse
order, Consolidated shifts in Category 3. 1°° chart periods are from
time period 31 to time period 8. 2™ chart periods are from time period
13 to time period 5. 3™ chart periods are from time period 7 to time
period 1. Isolated shifts occurred in time periods 22, 13 and 10. No
persistent shifts were detected. Large red data points identify
departures and shifts.

As could be expected, the general trends in the reversed data are
similar but in the opposite direction of those in the actual data. In
the individual univariate analysis, the three categories had a total of
four persistent shifts, all of which downward shifts. In the reversed

data, there were seven persistent shifts, six upward and one downward.
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The difference in the number of shifts, the time periods when the shifts
were detected, and the time periods when the shifts appeared to start
can be explained by the different orderings of the data when reversed
and its effects on the charts. Reversing the ordering of the SFOR data
results in different time periods being used to calculate the initial
target in control means and target out of control means. These will in
turn result in slightly different upper and lower control limits, ARL’s,
and values of the calculated cumulative statistics. Combining the
different ordering of the data with slightly different control 1limits
will result different shifts on the control charts.

In the multivariate analysis, both the reversed and the actual
data had two simultaneous univariate persistent shifts that necessitated
the charts being retuned and restarted. Again the shifts were in
opposite directions for the two data sets. The shifts in the actual
data were all downward shifts; where as the shifts in the reversed data
were all upward shifts.

The exercise of reversing the data is enlightening in that it
clearly shows that the charts are effective in identifying upward shifts
in the data, which for the SFOR commander in Bosnia has more
significance and costly consequences than identifying downward shifts.

4. Conclusions on Analysis of SFOR Incident Data

Results from the analysis suggest several key issues about the
situation that the commander should find informative and useful when
developing his force protection plan. First, the situation was the most
hostile in the initial data collection periods, 1 March through 5 April
1999, as denoted by high number of incidents in all data categories.
The high numbers of enemy incidents were not naturally occurring random
variations in the situation, but were instead statistically significant
isolated departures from the normally observed values as shown by the
departures signaled on the Shewhart charts. In particular, isolated

upward departures in both the individual univariate and simultaneous
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univariate Shewhart control charts occurred in category 3, violence
towards SFOR, during time period 4, and in category 3, threats and
rhetoric, during time period 5. Initial analysis for the possible
causes of these incidents revealed that these isolated departures
coincide with the United Nation’s efforts to broker a peace settlement
in Kosovo from February through the middle of March 1999, and the NATO
air strikes against Serbian facilities, which commenced on 25 March
1999. These actions are likely to generate a negative responses from
ethnic Serbians living in Bosnia. This negative response can be seen by
looking at the SFOR incident log during 22 through 28 March, which
corresponds to the start of the bombing campaign. The data log reveals
that at least six of the eleven demonstrations against SFOR were anti-
bombing demonstrations. From 29 March through 4 April, the number
increased to 12 out of 17.

The high levels of enemy incidents explained above were isolated
occurrences, with the numbers of incidents decreasing rapidly after 5
April. Increasing force protection levels after these incidents
occurred is somewhat ineffective. The changes would not take effect
until after the highest threat has already passed. If the increases in
force protection were implemented in time period 5, they would be
ineffective against the isolated upward departure in violence towards
SFOR that occurred during time period 4. The increase in force
protectipn levels would be effective in protecting the force against the
decreasing but still high threat that was present from time period 5
through time period 8, 29 May through 25 April.

Commanders should not be completely convinced by this seemingly
obvious cause of the high number of incidents. They should proceed with
additional analysis of the situation to determine if other factors were
present that may have caused or assisted in the increased number of
incidents. The commander should use these factors to predict future

enemy threat 1levels in similar situations. From these predictions,
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commanders can initiate the appropriate force protection levels prior to
the situation occurring, thus better protecting his unit. For example,
if the commander knew in advance of another large bombing campaign
against Serbian facilities in Serbia or Kosovo, he could increase the
force protection levels based off of the number of incidents observed
during time periods 4 and 5. This will at least give the commander an
approximation to the possible threat level he will face in response to
the new bombing campaign.

Secondly, the initial high hostility periods were followed by a
continual decrease in the number of enemy incidents in all data
categories through the end of the data collection pefiod, 3 October
1999. The number of incidents decreased rapidly during time periods 6,
7, and 8. After time period 8, 25 April, the numbers of incidents
appeared -to stabilize. The tool developed in this thesis however,
identified numerous statistically significant persistent decreases in
the number‘of incidents after 25 April.

Both the individual univariate analysis and the simultaneous
univariate analysis signaled persistent downward shifts in all data
categories after time period 8. Individual wunivariate anélysis
identified the first persistent downward shifts as starting in time
periods 6, 14, and 11, for the three data categories respectively. An
additional persistent downward shift occurred in category 1, and
appeared to start at time period 7. Simultaneous univariate analysis
detected two persistent downward shifts in the three data categories.
The first shift was detected in category 1, threats and rhetoric, at
time period 9. The second persistent downward shift occurred in
category 2, contentious activities, at time period 21. These shifts
appeared to start in time periods 5 and 13 respectively.

All of these persistent decreases justify lowering the force
protection level of the unit. The commanders and their staffs need to

analyze the situation further to determine the specific causes of these
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decreases and the appropriate force protection levels. By identifying
the possible causes of these decreases, commanders could also focus
their peacekeeping efforts in order to continue these trends.

It should be noted that there were two isolated departures
detected following time period 8. The first was a downward departure in
category 2, contentious activities, at time period 14, and the second
was an upward departure in category 1, threats and rhetoric, during time
period 29. As with other isolated departures discussed earlier, the

causes of these departures should be determined and used for future

reference.

Finally, the correlation between the data categories did not
change. The fact that the nonparametric nmltivariate analysis did not
detect any shifts in the correlation of the data categories suggests
that the enemy’'s efforts, as divided among the three categories,
remained constant. It can also be seen by the simultaneous increasing
or decreasing trends that occurred in all three data categories. If a
shift in the correlation between the data categories was detected, it
would indicate a change in the enemy’s distribution of effort. If the
shift, for example, was from threats and rhetoric to acts of violence,
the impact on force protection level would be significant. Identifying
changes in the correlation is crucial to the commander in his assessment
of the threat and his determination of appropriate force protection
levels.

It is certain from the number of departures and shifts detected
that the situation is volatile. The magnitude of this volatility is not
realized, however, without comparing the number of shifts detected to
the desired ARL‘s of the charts. The desired combined ARL’s, or target
false alarm rate, we¥e 100 for each type of analysis. From this, one
would expect one false alarm signal per independent univariate analysis
data category and one false alarm signal in all multivariate analysis

charts in 100 time periods or just over 2 years. Multiple shifts
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occurred in both independent univariate analysis and multivariate
analysis in only 31 time periods. This equates to a shift detection
rate that is 3 to 6 times higher than the expected false alarm rate,'
depending on the data category. This amount of wvolatility is
considerably larger than one might expect from just looking at the data.
The tool developed in this thesis clearly identifies this high
volatility in the SFOR data set. The commander must be made aware of
such wvolatility if he is to make the initiate the proper force
protection levels.

The overall recommendation after analyzing the SFOR incident data
is that the force protection measures be reduced due to the
statistically significant persistent decreases in the number of enemy
incidents after 5 April 1999, time period 8. However, sufficient
protection should be maintained to safeguard against possible isolated
increases in enemy incidents, as detected in category l,‘threats and
rhetoric, during time period 29. Also, in the event that a similar
bombing campaign is started against Serbian faciiities, the commander
should increase force protection levels based off the levels of enemy

incidents seen previously, as in time periods 4 through 8.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The methods and technigques developed and applied in this thesis,
both the univariate SPC methods and the multivariate nonparametric
permutation technique, effectively identified statistically significant
changes in OOTW environments that might not have detected by current
analysis methods. Current analysis methods are based on pattern
recognition of enemy actions when compared to their doctrine. This is
difficult in OOTW environments where enemy doctrine is often lacking if
it exists at all. Pattern recognition methods do not diffefentiate
between random fluctuations in the situation and statistically
siénificant changes in the situation. This analysis is left to the
commander who must rely on intuition and experience to determine if a
significant change has occurred and the appropriate response to the
change.

The use of SPC and the nonparametric multivariate technique
developed in this thesis in the analysis of enemy incident data widens
the applicability of SPC methods to an area of vital concern to the
military, force protection. The effective application of these
techniques not only provides commanders with the type of change that
occurred in the situation, but also identifies the likely time at which
the change started. From this information, the commander can focus his
standard intelligence analysis to determine the causes of the shift,
which can be used as the basis of his future plans and force protection
levels. The information gained when using this analysis tool will be
indispensable to commanders and staffs who are charged with conducting
difficult missions in hazardous environments, while maintaining the
security and safety of their soldiers.

This thesis combined standard univariate SPC analysis methods

along with a technique for the nonparametric analysis of multivariate
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data into a single statistical tool called *“Multivariate CUSUM”.
Multivariate CUSUM was created with “ease of use” in mind. This was
done to allow staff officers with basic training in statistics and SPC
to manage the analysis of incident data and brief the results to their
commander . Although the theory may be too complex for the untrained
staff officer, trained personnel from the higher command levels will be
able to educate their subordinate staff officers on the operation and
application of Multivariate CUSUM, especially the graphical output.
Once this is accomplished, the trained personnel will be able to monitor
and supervise the subordinate staff’s application of Multivariate CUSUM
with minimal effort.

Multivariate CUSUM is implemented in Microsoft Excel, which is
compatible with Army computer systems down to battalion level. It can
easily be loaded on current Army computer systems and can be deployed

with the unit wherever it may go.

Multivariate CUSUM is the fifst statistical tool to be offered for
the analysis of the enemy situation in OOTIW. It can augment current
analysis methods to ensure the commander get the most complete and
comprehensive estimate of the enemy situation possible. This tool and
the information it provides will enable commander to make the
appropriate and timely force protection decisions to ensure the safety
and security of his soldiers.

B. RECOMMENDATIONS

As the number of Army OOTW missions continue to increase, the
importance of force protection for deployed soldiers becomes more
important. The IPB process alone is not sufficient to meet this
challenge. Commanders need additional tools to assist them in
determining the correct force protection posture for their unit.
Multivariate CUSUM is a first step in meeting this challenge and
ensuring the preparedness of deployed units and the safety of our

soldiers.
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Multivariate CUSUM is not a cure-all. It does not replace the
need for the commander to know the abilities of his unit and the threats
faced in the current situation when determining the force protection
posture of his unit. Multivariate CUSUM is effective in identifying

statistically significant changes in the current situation, which will

improve the ability of the commander to properly assess the best force
protection level for his unit and to better protect his soldiers.

Multivariate CUSUM should be fielded and deployed with the higher
headquarters of deploying units, division and above, in sufficient time
for the personnel and the commander to become trained on its wuse.
Sufficient time must also be allowed for the controlling staff to brief
their subordinates on its use since the subordinate units will be the
units gathering the data. Without consistent and proper data
collection, any analysis will be questionable.

C. TOPICS FOR FURTHER STUDY

Additional study could be conducted to determine an efficient
method of calculating the Out of Control ARL’s for multiple possible
shifts in the multivariate analyéis. This would give the commanders
better insight into the time required for the technique to signal a
given target shift in the data and assist in power calculations.

Also, further research could be conducted to develop a method to
assist in determining the wvalues of k*, k7, and the Winsorizing
constant. Simulation was used in this thesis to identify acceptable
values for these parameters. A statistical or mathematical method would
be more efficient and give the user a more deterministic means of
calculating the parameters.

Multivariate CUSUM is designed for the analysis of three
variables. Additional work could be done to scale the program for
analysis of an arbitrary number of variables.

Finally, further research could be done to determine the

applicability of these methods into the area of friendly unit deception.
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If the enemy were to use a similar tool, he may be ablé to make more
precise predictions on our future actions and therefore better prepare
to defeat them. Multivariate CUSUM may be effective in identifying the
predictability of our actions and deception plans. By self-analyzing
our actions and plans, we may prevent the enemy from identifying changes

in our posture and preparing against our future actions.
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APPENDIX A. SFOR INCIDENT LOG SUMMARY
This data was taken from March through October 1999 from the SFOR
incident log at Task Force Eagle. Entries into the log that did not

pertain to local populace actions toward SFOR units were disregarded.

CONSOLIDATED SFOR INCIDENT DATA

March - October 1999
Month Dates Time Category 1 Category 2 Category 3
Periods Threats & Contentious Violence
Rhetoric Activities Towards SFOR
March 1-7 1 8 9 2
8-14 2 3 7 1
15-21 3 6 7 0
22-28 4 11 14 7
April 29-4 5 17 7 3
5-11 6 6 3 5
12-18 7 4 4 2
19-25 8 2 6 2
May 26-2 9 2 2 0
3-9 10 2 7 5
10-16 11 3 9 0
17-23 12 2 4 1
24-30 13 1 8 3
June 31-6 14 1 0 0
7-13 15 0 5 0
14-20 16 0 2 0
21-27 17 0 6 1
July 28-4 18 1 0 0
5-11 19 0 1 0
12-18 20 0 1 2
19-25 21 0 1 2
26-1 22 1 2 3
‘August 2-8 23 0 3 0
9-15 24 0 0 0
16-22 25 0 4 0
: 23-29 26 0 5 0
September  30-6 27 0 7 0
6-12 28 1 2 0
13-19 29 4 5 1
20-26 30 0 3 0
October 27-3 31 1 2 1
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APPENDIX B. DIRECTIONS FOR USING MULTIVARIATE

CUSUM

A. GENERAL

1.

B.

1.

Begiri any analysis by entering the data into the “datal” page.
Column A is a number that designates the time period. Columns B,
C, and D are the actual data values of the time period.

. When restarting the charts and updating the time periods and data

values on “datal” page, use only the “Paste Special Values” option
in Excel.

UNIVARIATE ANALYSIS

Press the “F9” key to calculate the target in control lambda’s,
the lambda+s’, and the lambda-‘s for the different data
categories. These values are currently set for a 50% increase and
a 50% decrease of the target in control lambda for each category.
This targeted shift may be change at the user’s discretion by
changing the underlying equations in the appropriate cells.

Press the “Run GETH” command button to execute ANYGETH.exe and
determine the CUSUM chart control limits. Directions for using
ANYGETH.exe are in Appendix C.

Press the appropriate “Change Parameters _” command button for
each of the data categories. Enter the decision intervals
obtained from ANYGETH.exe into the Upper 1limit and Lower limit
windows. Enter the target Lambda in control, the Lambda+, and the
Lambda- from the appropriate cells on the Excel “datal” page for
the corresponding data category. Enter the desired Shewhart chart
probability 1limit into the Isolate Probability Limits window.
Press the “0OK” command button when complete.

Select the “Update Univariate Graphs” command button to update the
univariate graphs. Multivariate will take you to the univariate
graphs of data category 3. You can move to the other graphs by
selecting the appropriate worksheet tab at the bottom of the Excel
window or move back to the “datal” page by selecting the “Go to
Data” command button.

If a category goes out of control, the charts will plot the points
outside the control limits. The “datal” page will also display

the work *“hot” in the appropriate time period for the
corresponding data category. Charts do not have to be retuned and
restarted for isolated shifts. They do have to be retuned and

restarted for persistent shifts.

C. MULTIVARIATE ANALYSIS

1.

Conduct simultaneous univariate analysis 1in the same manner
describe above in univariate analysis being sure to start all
charts when a persistent shift is detected in any one of the CUSUM
charts.

Once the simultaneous univariate analysis is complete, return to

the Excel *“datal” page. Enter the desired wvalues for the
parameters listed beneath the “Update Multivariate Graphs” button.
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a. Recommend starting with values of k+ and k- equal to 4 and 2
respectively. After executing the *“Update Multivariate
Graphs” command button below, the values of k+ and k- should
be adjusted to obtain the appropriate control limits.

b. Recommend a Winsorizing constant equal 10. As with the values
of k+ and k-, the Winsorizing constant should be adjusted
after executing the “Update Multivariate Graphs” command
button below to obtain the appropriate control limits.

c. Recommend an initial number of permutations equal to 500. The
user will save time by running smaller number of permutations
when adjusting the k+, k- and Winsorizing parameters. When
these parameters are appropriate, this thesis recommends
running 4800 permutations to obtain smooth control limits and
thorough sampling of the data.

d. With 3 data categories, this thesis recommends an initial an
initial starting point of 7. Although this does not totally
remove problems caused by near-singular covariance matrices,
it sufficiently reduces the problem without sacrificing data
observations.

e. The confidence interval of the multivariate charts is based on
the desired ARL. 99.94% was used in this thesis to achieve a
multivariate test ARL of 1667 and an overall process ARL of
100.

Once the parameters are updated, select the “Update Multivariate
Graphs” command button to begin the nonparametric permutation
technique and to update the univariate graphs. Multivariate will
take you to the multivariate Shewhart control chart. You can move
to the other graphs by selecting the appropriate worksheet tab at
the bottom of the Excel window or move back to the “datal” page by
selecting the “Go to Data” command button.

If a category goes out of control, the charts will plot the points
outside the control limits. The “datal” page will also display
the work “hot” in the appropriate time period in the “Multivariate
Hot” columns. Once again, charts do not have to be retuned and
restarted for isolated shifts. They do have to be retuned and
restarted for any persistent shifts, either from the univariate
charts or from the multivariate charts.

When restarting the charts because of a persistent shift, all data
categories are started at the same time regardless of whether or
not they are out of control. Follow the steps listed above for
univariate analysis and multivariate analysis to restart the
charts and conduct analysis on the new time periods.




APPENDIX C. DIRECTIONS FOR USING ANYGETH.EXE

Open ANYGETH.exe from the Visual Basic command button.

Select the desired distribution from the provided list. For
example, if the Poisson Distribution desired, enter the number 3 and
press return.

Enter the desired target in control mean and out of control mean.
Separate the wvalues by a space or a carriage return. In
Multivariate, the in control means are calculated on “datal” in
cells J9 for Category 1, J15 for Category 2, J21 for Category 3.
Target out of control means for an upward shift of 50% of the in
control mean are calculated on “datal” in cells J10 for Category 1,
J16 for Category 2, J22 for Category 3. Target out of control means
for a downward shift of 50% of the in control mean are calculated on
“datal” in cells Jl1l1 for Category 1, J17 for Category 2, J23 for
Category 3.

ANYGETH.exe will calculate the exact theoretical reference value.
This value should be rounded because the ANYGETH.exe may not
converge on an appropriate decision interval using the exact
theoretical reference wvalue. Recommend rounding to the nearest
100, For example, if ANYGETH.exe returns a theoretical reference
value of 4.23, round the number to 4.2 and press return.

Enter -999 999 to execute ANYGETH.exe without a Winsorzing Constant.
For information regarding Winsorization in Statistical Process
Control, refer to Cumulative Sum Charts and Charting for Quality
Improvement by D. Hawkins and D. Olwell.

Select the desired chart, either “z” for zero start CUSUM or “f” for
Fast Initial Response and press return. This thesis uses zero start
CUSUM charts exclusively.

Enter the appropriate average run 1length (ARL) and press return.
This thesis uses a test ARL of 1600 to obtain an overall process ARL
of 100.

ANYGETH.exe will calculate the appropriate control limit. This
value is designated as the Decision Interval. ANYGETH.exe always
returns a positive Decision Interval wvalue. The lower Decision
Interval values should be entered as negative values when input into
Multivariate. For example, ANYGETH.exe returns a lower Decision
Interval of 4.4, the user should input -4.4 when entering the values
into the Multivariate “Change Parameter” window.

Repeat the above steps for each upper and lower control limit for
each data category.
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APPENDIX D. VERIFICATION OF POISSON DATA

The table below shows the results of two separate tests that
attempt to verify that the data is from the Poisson distribution. The
first test is the “mean equals variance” test. This general test for
Poisson data tests if the mean of the sample is generally close to the
variance of the sample. This follows from the property of Poisson data
that the mean is equal to the variance.« The test shows variances that
are generally twice as large as the means of the samples. This would
suggest that the data is not Poisson. However, this may be explained by
the presence of multiple Poisson processes. If multiple Poisson
processes are present, the variance will be larger than the mean of the
sample. This is ©because the tails of the individual Poisson
distributions will spread out the variance of the combined sample.

The second test is the ¥* Goodness of Fit Test. This test is a
more precise test than the “mean equals variance” test. The results of
this test show that the data may be plausibly Poisson, as the p values
obtained were larger than the alpha used for the test, 0.01. One
limitation of this test when used on this data set is that it requires
the data to have a constant mean. As shown in this thesis, the means of
all data categories changed throughout the 31 time periods. This
resulted in the 31 sample periods being reduced to generally the largest
in control sample of each variable. For example, data category 1 had
the longest run in control from time period 13 to time period 31 as
shown by the box around the data. This was the sample size used for the
test.

Another weakness of this test when used on this data set is that
the test requires bin sizes larger than 5. Dividing the small in
control sample sizes into three bins, resulted in numerous bin sizes

that were close to or equal to 5.
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Given the limitations and discrepancies of these two tests,

thesis concluded that the data may be plausibly Poisson.

| Period

Cat 1

Cat 2

Cat3 |

8
3
6

—
-

—*Oh—'OOOOO—*OOO—‘OOO-‘—ANQNNN#O’!:}

NOONNOTROON==200NOO RO NN RWNRENNO

S O -2 0000 O0COWNNOOLO00O0OWaAODNNONNBTWNO 4N

p value

Time Periods 8-31

Mean 1 Mean 2 Mean 3

0.52631579 2.88235294  0.875

Variance 1 Variance 2 Variance 3

0.92982456 4.48529412 1.76630435
n-=18 n-1=16 n-1=24

CHI 2 GOF CHi 2 GOF CHI 2 GOF

0.4585 0.8932 4.778

CHI SQRD CHI SQRD CHI SQRD

0.49832584 0.34461162 0.02882558

PLAUSIBLY POISSON
yes . yes . yes’

fail 1o reject fail 1o reject - fail to reject

POISSON IF:
CHI 2 GOF < CHI 2 stat
or
CHI SQRD > alpha
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Chi 2 stat alpha = .01

6.6348913

alpha
0.01

df =1
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